Bending Light Around Tight Corners Without Backscattering Losses
November 20, 2018 | Duke UniversityEstimated reading time: 3 minutes

Engineers at Duke University have demonstrated a device that can direct photons of light around sharp corners with virtually no losses due to backscattering, a key property that will be needed if electronics are ever to be replaced by light-based devices.
The result was achieved with photonic crystals built on the concept of topological insulators, which won its discoverers a Nobel Prize in 2016. By carefully controlling the geometry of a crystal lattice, researchers can block light from traveling through its interior while transmitting it perfectly along its surface.
The device accomplishes its near-perfect transmittance around corners despite being much smaller than previous designs.
The Semiconductor Industry Association estimates that the number of electronic devices is increasing so rapidly that by the year 2040, there won’t be enough power in the entire world to run them all. One potential solution is to turn to massless photons to replace the electrons currently used for transmitting data. Besides saving energy, photonic systems also promise to be faster and have higher bandwidth.
Photons are already in use in some applications such as on-chip photonic communication. One drawback of the current technology, however, is that such systems cannot turn or bend light efficiently. But for photons to ever replace electrons in microchips, travelling around corners in microscopic spaces is a key.
A schematic of the new optical waveguide device showing the input and output gratings and silicon waveguide connections.
“The smaller the device the better, but of course we’re trying to minimize losses as well,” said Wiktor Walasik, a postdoctoral associate in electrical and computer engineering at Duke. “There are a lot of people working to make an all-optical computing system possible. We’re not there yet, but I think that’s the direction we’re going.”
Previous demonstrations have also shown small losses while guiding photons around corners, but the new Duke research does it on a rectangular device just 35 micrometers long and 5.5 micrometers wide—100 times smaller than previously demonstrated ring-resonator-based devices.
In the new study, which appeared online on November 12 in the journal Nature Nanotechnology, researchers fabricated topological insulators using electron beam lithography and measured the light transmittance through a series of sharp turns. Each turn only resulted in the loss of a few percent.
A closer look at the new optical waveguide device featuring a zoomed-in view of the fabricated photonic crystal topological insulator.
“Guiding light around sharp corners in conventional photonic crystals was possible before but only through a long laborious process tailored to a specific set of parameters,” said Natasha Litchinitser, professor of electrical and computer engineering at Duke. “And if you made even the tiniest mistake in its fabrication, it lost a lot of the properties you were trying to optimize.”
“But our device will work no matter its dimensions or geometry of the photons’ path and photon transport is ‘topologically protected,’” added Mikhail Shalaev, a doctoral student in Litchinitser’s laboratory and first author of the paper. “This means that even if there are minor defects in the photonic crystalline structure, the waveguide still works very well. It is not so sensitive to fabrication errors.”
The researchers point out that their device also has a large operating bandwidth, is compatible with modern semiconductor fabrication technologies, and works at wavelengths currently used in telecommunications.
Now the researchers are trying to make a waveguide that can be turned on or off at will—another important feature for all-optical photon-based technologies to ever become a reality.
This work was supported by the Army Research Office (W911NF-15-1-0152, W911NF-11-1-0297).
CITATION: “Robust Topologically Protected Transport In Photonic Crystals at Telecommunication Wavelengths,” Mikhail I. Shalaev, Wiktor Walasik, Alexander Tsukernik, Yun Xu, Natalia M. Litchinitser. Nature Nanotechnology, 12 November, 2018. DOI: 10.1038/s41565-018-0297-6
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
The Shaughnessy Report: Winning the Signal Integrity Battle
09/09/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportWhen I first started covering this industry in 1999, signal integrity was the hip new thing in PCB design. Conference classes on signal integrity were packed to the walls, and an SI article was guaranteed to get a lot of reads.
Standard of Friendship: Debbie McDade and Symon Franklin Went From Classmates to Colleagues
08/27/2025 | Debbie McDade, Advanced Rework Technology Ltd.As a fairly new IPC Master Trainer, I nervously attended my first IPC committee meeting in 2002 in New Orleans—a 4,600-mile trip from my home in the UK—for the IPC-610 Task Group. With more than 250 members, it was the largest IPC committee at that time.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.
Insulectro Facilitates Fabricator Access to EMC Mass Lam Capabilities
07/30/2025 | InsulectroInsulectro, the largest distributor of materials used in the manufacturing of printed circuit boards and printed electronics, announces a new service - a system to help our customers to access EMC's well established mass lam offerings. Long a leader in mass lam manufacturing, EMC is the exclusive supplier in Insulectro's laminate and pre preg portfolio.
American Made Advocacy: A Growing Presence in Washington in Turbulent Times
07/29/2025 | Shane Whiteside -- Column: American Made AdvocacyLast month, PCBAA held its fourth annual meeting in Washington, D.C. It was our largest gathering to date and included speakers from the House and Senate, the Department of Commerce, and OEMs Lockheed Martin, RTX, and Northrop Grumman. We also spent a day on Capitol Hill educating lawmakers and their staff about the importance of a secure domestic microelectronics supply chain.