-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
A Look at Medical Electronics Design and Assembly Challenges
December 26, 2018 | I-Connect007 Editorial TeamEstimated reading time: 9 minutes
We recently spoke with Dr. Despina Moschou, lecturer at the University of Bath, as well as Kaspars Fricbergs, VP of global quality, and Tom Reilly, director of marketing and sales operations, of EMS firm Vexos Corp., to learn more about the challenges and opportunities in medical electronics design and assembly, as well as the relevant regulatory and supply chain issues.
Stephen Las Marias: Tell us more about yourself, Despina, and your lab-on-a-chip project.
Dr. Despina Moschou: I always start by introducing people to what lab-on-a-chip is in general. Lab-on-a-chip is not my invention—I have to be very clear on that. Professor George Whitesides from Harvard and Professor Andreas Manz first suggested it. They came up with this idea in the mid-1990s. The concept was miniaturizing a complete biomedical laboratory in a microchip. This vision is what we, the scientific community all over the world, have been trying to do for the past 20–30 years.
Before I became involved in this field, my original background was purely electronics. I’m an electronics engineer, I graduated from Athens, and I have a Ph.D. in microelectronics. During my first post-doctoral research, I ran into the field of lab-on-a-chip—in particular, microfluidic devices. Since then, I have been involved in that because the impact of this technology is enormous once it reaches everyday life.
What does this technology do? Imagine if you could have the whole biochemical laboratory on your hand. Wouldn’t that be cool? And apart from being cool, let’s assume we have a biomedical laboratory such as a health-care facility. What do you do when you want to identify a diagnosis? Either you or your doctor will take a sample—such as blood, urine, or any other kind of biological sample—and will take a bottle of it and ship it to a laboratory. The laboratory will do an analysis. It will take a few hours, days, or even weeks, and then you will receive the results. This is the current routine in health-care practice for all kinds of diseases, whether infectious, routine checking, or monitoring your pregnancy or cancer treatment. Wouldn’t it be great if we could avoid all the delays? How different would it be if instead of taking things to the laboratory, we could bring the laboratory to the people who need it.
And because you don’t have to delay, treatment can start immediately. You wouldn’t have to wait. Starting treatment is extremely important for overcoming any kind of disease. It will also have a huge impact in environments and countries where you don’t have access to health-care facilities whatsoever, such as remote islands or low- and middle-income countries where you don’t have access to health-care facilities with laboratories. In all of these cases, having a miniaturized laboratory can make a huge difference. This is roughly the vision of what we are trying to realize with our Research at the University of Bath.
Barry Matties: The technology itself is really interesting because they’re using these miniature micro-pumps to move fluid around, and the idea was to actually incorporate it into the build of the circuit board. And it’s really a game-changer. What’s interesting about this also is it’s one and done, meaning you use it, you throw it away and you buy more. So, from a consumption point of view, millions and millions of units will be sold. And you’ve already had success in creating the lab onboard and doing diagnostics, correct?
Moschou: Yes, we have.
Matties: This really goes with the continued desire for smaller, faster electronics, more affordable, and it’s going to revolutionize the way that medical diagnostics is done.
Moschou: Exactly. What I have been driving for the past few years is trying to implement Lab-on-Chip technology on PCBs. At the moment, and ever since the invention of lab-on-a-chip, every research laboratory in the world has been using their own in-house technique to fabricate those devices. We don’t have lab-on-a-chip technology with one way to manufacture things. In electronics, we have PCBs. We have the standard card that we all use to simulate and design boards, and manufacturers globally that have standardized procedures because this is an industry that’s been around for many years.
In lab-on-a-chip, this is not the case. We are still at the research stage and are gradually transitioning into actual commercialization of devices the past few years. One of the problems delaying this process is that we don’t have factories. We don’t have a lab-on-a-chip factory where I can make something in my lab, design it, and then I can go and get millions of them. This is why I have been trying and persisting on the lab-on-PCB approach because we can actually use the factories that are out there right now fabricating electronic boards and transition into something more advanced—something smaller and more intelligent that can add further functionality to the electronic boards. This time, we can incorporate miniaturized channels to transport the liquids and the fluids that we want to analyze, which are called microfluidic tunnels. We can have analytical biomedical devices on a PCB.
This is not conceptual. I have been presenting for the past few years on the projects and prototypes we have made. We started making things in the lab with PCB technology, but lately, I’ve been working with several manufacturers around the world. I have shown several prototypes for many applications—mainly medical applications—involving DNA and protein detection for different cancer diagnoses. Currently, we are working in the lab on several of the prototypes for diagnosis. It’s a proven concept. It can be done.
Page 1 of 2
Suggested Items
Kaynes Technology Acquires Canada-Based August Electronics
05/09/2025 | PRNewswireAugust Electronics Inc. is pleased to announce that it has entered into a definitive agreement to be acquired by Kaynes Canada Limited, a wholly owned step-down subsidiary of Kaynes Technology India Limited, a leading Electronics System Design & Manufacturing (ESDM) company. The transaction is expected to close by the end of May 2025, subject to customary regulatory approvals and closing conditions.
LITEON Technology Reports Consolidated April Sales of NT$13.4 Billion Up 27% YoY
05/09/2025 | LITEON TechnologyLITEON Technology reported its April consolidated revenue of NT$13.4 billion. Thanks to the growth from power management in cloud computing, advanced server, and networking, the revenue is up 27% YoY.
Primech AI Plans Production of 300 HYTRON Robots through its China Manufacturing Expansion
05/09/2025 | Globe NewswirePrimech AI Pte. Ltd., a subsidiary of Primech Holdings Limited announced a significant expansion of its manufacturing capabilities through a strategic manufacturing partnership in Guangdong Province, China.
Creative Electron Strengthens Leadership Team with Strategic Appointments in Marketing and SMT Business Unit
05/08/2025 | Creative ElectronCreative Electron, the largest U.S. manufacturer of X-ray inspection systems for the electronics industry, is proud to announce the addition of two seasoned leaders to its executive team: Wagner Lima as Marketing Director and Giancarlo De La Garza as SMT Business Unit Director.
LG Electronics India Limited Begins Construction of Its Third Manufacturing Plant in India
05/08/2025 | BUSINESS WIRELG Electronics India Ltd. (LGEIL) announced the commencement of construction of its new manufacturing facility in Sri City, Andhra Pradesh today at a ceremony graced by the presence of Shri Nara Lokesh, Hon'ble Minister for Information Technology, Electronics and Communications.