Controllable Fast, Tiny Magnetic Bits
January 4, 2019 | MITEstimated reading time: 9 minutes
For many modern technical applications, such as superconducting wires for magnetic resonance imaging, engineers want as much as possible to get rid of electrical resistance and its accompanying production of heat.
It turns out, however, that a bit of heat production from resistance is a desirable characteristic in metallic thin films for spintronic applications such as solid-state computer memory. Similarly, while defects are often undesirable in materials science, they can be used to control creation of magnetic quasi-particles known as skyrmions.
In separate papers published this month in the journals Nature Nanotechnology and Advanced Materials, researchers in the group of MIT Professor Geoffrey S.D. Beach and colleagues in California, Germany, Switzerland, and Korea, showed that they can generate stable and fast moving skyrmions in specially formulated layered materials at room temperature, setting world records for size and speed. Each paper was featured on the cover of its respective journal.
For the research published in Advanced Materials, the researchers created a wire that stacks 15 repeating layers of a specially fabricated metal alloy made up of platinum, which is a heavy metal, cobalt-iron-boron, which is a magnetic material, and magnesium-oxygen. In these layered materials, the interface between the platinum metal layer and cobalt-iron-boron creates an environment in which skyrmions can be formed by applying an external magnetic field perpendicular to the film and electric current pulses that travel along the length of the wire.
Notably, under a 20 milliTesla field, a measure of the magnetic field strength, the wire forms skyrmions at room temperature. At temperatures above 349 kelvins (168 degrees Fahrenheit), the skyrmions form without an external magnetic field, an effect caused by the material heating up, and the skyrmions remain stable even after the material is cooled back to room temperature. Previously, results like this had been seen only at low temperature and with large applied magnetic fields, Beach says.
Predictable Structure
“After developing a number of theoretical tools, we now can not only predict the internal skyrmion structure and size, but we also can do a reverse engineering problem, we can say, for instance, we want to have a skyrmion of that size, and we’ll be able to generate the multi-layer, or the material, parameters, that would lead to the size of that skyrmion,” says Ivan Lemesh, first author of the Advanced Materials paper and a graduate student in materials science and engineering at MIT. Co-authors include senior author Beach and 17 others.
A fundamental characteristic of electrons is their spin, which points either up or down. A skyrmion is a circular cluster of electrons whose spins are opposite to the orientation of surrounding electrons, and the skyrmions maintain a clockwise or counter-clockwise direction.
“However, on top of that, we have also discovered that skyrmions in magnetic multilayers develop a complex through-thickness dependent twisted nature,” Lemesh said during a presentation on his work at the Materials Research Society (MRS) fall meeting in Boston.
The current research shows that while this twisted structure of skyrmions has a minor impact on the ability to calculate the average size of the skyrmion, it significantly affects their current-induced behavior.
Fundamental Limits
For the paper in Nature Nanotechnology, the researchers studied a different magnetic material, layering platinum with a magnetic layer of a gadolinium cobalt alloy, and tantalum oxide. In this material, the researchers showed they could produce skyrmions as small as 10 nanometers and established that they could move at a fast speed in the material.
“What we discovered in this paper is that ferromagnets have fundamental limits for the size of the quasi-particle you can make and how fast you can drive them using currents,” says first author Lucas Caretta, a graduate student in materials science and engineering.
In a ferromagnet, such as cobalt-iron-boron, neighboring spins are aligned parallel to one another and develop a strong directional magnetic moment. To overcome the fundamental limits of ferromagnets, the researchers turned to gadolinium-cobalt, which is a ferrimagnet, in which neighboring spins alternate up and down so they can cancel each other out and result in an overall zero magnetic moment.
“One can engineer a ferrimagnet such that the net magnetization is zero, allowing ultrasmall spin textures, or tune it such that the net angular momentum is zero, enabling ultrafast spin textures. These properties can be engineered by material composition or temperature,” Caretta explains.
In 2017, researchers in Beach’s group and their collaborators demonstrated experimentally that they could create these quasi-particles at will in specific locations by introducing a particular kind of defect in the magnetic layer.
“You can change the properties of a material by using different local techniques such as ion bombardment, for instance, and by doing that you change its magnetic properties,” Lemesh says, “and then if you inject a current into the wire, the skyrmion will be born in that location.”
Adds Caretta: “It was originally discovered with natural defects in the material, then they became engineered defects through the geometry of the wire.”
They used this method to create skyrmions in the new Nature Nanotechnology paper.
Page 1 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.