IBM Unveils World's First Integrated Quantum Computing System for Commercial Use
January 9, 2019 | IBMEstimated reading time: 4 minutes
IBM assembled a world-class team of industrial designers, architects, and manufacturers to work alongside IBM Research scientists and systems engineers to design IBM Q System One, including UK industrial and interior design studios Map Project Office and Universal Design Studio, and Goppion, a Milan-based manufacturer of high-end museum display cases that protect some of the world's most precious art including the Mona Lisa at the Louvre, and the Crown Jewels at the Tower of London.
Together these collaborators designed the first quantum system to consolidate thousands of components into a glass-enclosed, air-tight environment built specifically for business use, a milestone in the evolution of commercial quantum computers.
This integrated system aims to address one of the most challenging aspects of quantum computing: continuously maintaining the quality of qubits used to perform quantum computations. Powerful yet delicate, qubits quickly lose their special quantum properties, typically within 100 microseconds (for state-of-the-art superconducting qubits), due in part to the interconnected machinery's ambient noise of vibrations, temperature fluctuations, and electromagnetic waves. Protection from this interference is one of many reasons why quantum computers and their components require careful engineering and isolation.
The design of IBM Q System One includes a nine-foot-tall, nine-foot-wide case of half-inch thick borosilicate glass forming a sealed, airtight enclosure that opens effortlessly using "roto-translation," a motor-driven rotation around two displaced axes engineered to simplify the system's maintenance and upgrade process while minimizing downtime – another innovative trait that makes the IBM Q System One suited to reliable commercial use.
A series of independent aluminum and steel frames unify, but also decouple the system's cryostat, control electronics, and exterior casing, helping to avoid potential vibration interference that leads to "phase jitter" and qubit decoherence.
This new system marks the next evolution of IBM Q, the industry's first effort to introduce the public to programmable universal quantum computing through the cloud-based IBM Q Experience, and the commercial IBM Q Network platform for business and science applications. The free and publicly available IBM Q Experience has been continuously operating since May of 2016 and now boasts more than 100,000 users, who have run more than 6.7 million experiments and published more than 130 third-party research papers. Developers have also downloaded Qiskit, a full-stack, open-source quantum software development kit, more than 140,000 times to create and run quantum computing programs. The IBM Q Network includes the recent additions of Argonne National Laboratory, CERN, ExxonMobil, Fermilab, and Lawrence Berkeley National Laboratory.
Page 2 of 2Suggested Items
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Connect the Dots: The Future of PCB Design and Manufacturing
07/02/2025 | Matt Stevenson -- Column: Connect the DotsFor some time, I have been discussing the increasing complexity of PCBs and how designers can address the constantly evolving design requirements associated with them. My book, "The Printed Circuit Designer’s Guide to… Designing for Reality," details best practices for creating manufacturable boards in a modern production environment.
Siemens Turbocharges Semiconductor and PCB Design Portfolio with Generative and Agentic AI
06/24/2025 | SiemensAt the 2025 Design Automation Conference, Siemens Digital Industries Software today unveiled its AI-enhanced toolset for the EDA design flow.
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?