Tiny Silicon Particles Could Power Lithium Ion Batteries With 10 Times More Capacity
January 17, 2019 | University of AlbertaEstimated reading time: 1 minute

University of Alberta chemists have taken a critical step toward creating a new generation of silicon-based lithium ion batteries with 10 times the charge capacity of current cells.
Image Caption: U of A chemists Jillian Buriak (pictured), Jonathan Veinot and their team found that nano-sized silicon particles overcome a limitation of using silicon in lithium ion batteries. The discovery could lead to a new generation of batteries with 10 times the capacity of current lithium ion batteries. (Photo: John Ulan)
“We wanted to test how different sizes of silicon nanoparticles could affect fracturing inside these batteries,” said Jillian Buriak, a U of A chemist and Canada Research Chair in Nanomaterials for Energy.
Silicon shows promise for building much higher-capacity batteries because it’s abundant and can absorb much more lithium than the graphite used in current lithium ion batteries. The problem is that silicon is prone to fracturing and breaking after numerous charge-and-discharge cycles, because it expands and contracts as it absorbs and releases lithium ions.
Existing research shows that shaping silicon into nano-scale particles, wires or tubes helps prevent it from breaking. What Buriak, fellow U of A chemist Jonathan Veinot and their team wanted to know was what size these structures needed to be to maximize the benefits of silicon while minimizing the drawbacks.
The researchers examined silicon nanoparticles of four different sizes, evenly dispersed within highly conductive graphene aerogels, made of carbon with nanoscopic pores, to compensate for silicon’s low conductivity. They found that the smallest particles—just three billionths of a metre in diameter—showed the best long-term stability after many charging and discharging cycles.
“As the particles get smaller, we found they are better able to manage the strain that occurs as the silicon ‘breathes’ upon alloying and dealloying with lithium, upon cycling,” explained Buriak.
The research has potential applications in “anything that relies upon energy storage using a battery,” said Veinot, who is the director of the ATUMS graduate student training program that partially supported the research.
“Imagine a car having the same size battery as a Tesla that could travel 10 times farther or you charge 10 times less frequently, or the battery is 10 times lighter.”
Veinot said the next steps are to develop a faster, less expensive way to create silicon nanoparticles to make them more accessible for industry and technology developers.
Suggested Items
QuantumScape, Murata Announce Framework for Ceramics Collaboration
04/25/2025 | BUSINESS WIREQuantumScape Corporation, a global leader in next-generation solid-state lithium-metal battery technology, and Murata Manufacturing Co. have entered into the first phase of an agreement to explore a collaboration for high-volume manufacturing of ceramic film for QS’s solid-state battery technology.
Murata, QuantumScape Start to Explore a Collaboration for Manufacturing of Ceramics
04/24/2025 | MurataMurata Manufacturing Co., Ltd. and QuantumScape Corporation have entered into the first phase of an agreement to explore a collaboration for high-volume manufacturing of ceramic film for QuantumScape’s solid-state battery technology.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
UHDI Fundamentals: UHDI Drives Unique IoT Innovation in Farming
04/22/2025 | Anaya Vardya, American Standard CircuitsThe combination of UHDI's high-bandwidth capabilities and IoT's real-time data processing can lead to more efficient, immersive, and smarter IoT systems. This convergence of two revolutionary technologies is enabling quantum advancements in some very “unconventional” applications. The typical discussions around UHDI focus on our standard electronics industry market segments like milaero, medical, consumer electronics, etc. IoT is all about machines talking to other machines, machine learning, and artificial intelligence, but again, typically applied in our PCB and assembly operations.
Boyd Opens State of the Art Battery Material Test Lab to Safely Accelerate Battery Design and New Product Introduction
04/09/2025 | Boyd CorporationBoyd, a leader in battery thermal propagation prevention and thermal runaway containment technology, announced the grand opening of its cutting-edge battery material test laboratory in San Jose, California.