UMass Amherst Engineers Use Memristors to Bypass Computing Bottleneck in Memory Critical for Artificial Intelligence
January 25, 2019 | UMass AmherstEstimated reading time: 2 minutes
Opening the way for advances in applications such as natural language understanding, machine translation, speech recognition and video surveillance, a team of researchers headed by Qiangfei Xia and Joshua Yang, electrical and computer engineers at the University of Massachusetts Amherst, says it can use memristor crossbar arrays to overcome a key bottleneck in traditional computing architecture.
The researchers say a memristor is a two-terminal “memory resistor” that performs computation at the same location where information is stored. This feature removes the need for traditional computers to transfer data between two sites, leading to a much better energy-speed efficiency. A memristor crossbar is a matrix of the tiny switches.
“Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units have led to major advances in artificial intelligence,” the researchers say. However, state-of-the-art LSTM models with significantly increased complexity and a large number of parameters have a bottleneck in computing power resulting from both limited memory capacity and limited data communication capacity.
A solution to this LSTM blockage can be implemented with a memristor crossbar array, which has a small circuit footprint, can store a large number of parameters, and offers in-memory computing capability that contributes to circumventing what is known as the von Neumann bottleneck. “We illustrate the capability of our crossbar system as a core component in solving real-world problems, and show that memristor LSTM is a promising low-power and low-latency hardware platform for edge inference.”
The von Neumann bottleneck refers to the limits on the amount of data that can be transferred and energy efficiency in a computer built using the von Neumann architecture, in which the data processing and memory units are physically separated with a single common bus in between. John von Neumann was a 20th century mathematician, scientist, and computer science pioneer who in 1945 proposed the computer architecture which is still the basis for digital computers today.
“The memristor crossbar implementation of an LSTM,” say the authors, “to the best of our knowledge, has yet to be demonstrated, primarily because of the relative scarcity of large memristor arrays. In this work, we demonstrate our experimental implementation of a core part of LSTM networks in memristor crossbar arrays.”
As a demonstration, the authors applied the memristor-based LSTM in predicting the number of airline passengers based on data from past years, and in recognizing a person according to the way she or he walks. This is important in identifying a person when the face is camouflaged or facial recognition is technically difficult. “This work shows that the LSTM networks built in memristor crossbar arrays represent a promising alternative computing paradigm with high-speed energy efficiency.”
Suggested Items
IT Distribution Records Strong Revenue Growth in Q1 Fueled by Personal Computing Purchases Amidst Tariff Uncertainty
05/02/2025 | IDCSales through distribution in North America posted a second consecutive quarter of growth in the first quarter of 2025. Distributor Revenues came in at $19.9B which is a 7.6% increase year-over-year, according to the International Data Corporation (IDC) North America Distribution Track e r (NADT).
INEMI Smart Manufacturing Tech Topic Series: Enhancing Yield and Quality with Explainable AI
05/02/2025 | iNEMIIn semiconductor manufacturing, the ability to analyze vast amounts of high-dimensional data is critical for ensuring product quality and optimizing wafer yield.
Nolan's Notes: The Next Killer App in Component Manufacturing
05/02/2025 | Nolan Johnson -- Column: Nolan's NotesFor quite a while, I’ve been wondering what the next “killer app” will be in electronics manufacturing and why it has been so long since the last disruptive change in EMS. I believe the answer lies in artificial intelligence, which has exploded as the next disruptor.
Keysight EDA, Intel Foundry Collaborate on EMIB-T Silicon Bridge Technology for Next-Generation AI and Data Center Solutions
04/30/2025 | BUSINESS WIREKeysight Technologies, Inc. announced a collaboration with Intel Foundry to support Embedded Multi-die Interconnect Bridge-T (EMIB-T) technology, a cutting-edge innovation aimed at improving high-performance packaging solutions for artificial intelligence (AI) and data center markets in addition to the support of Intel 18A process node.
Machine Vision: MVTec Expands Deep Learning Portfolio with New Versions of its Deep Learning Tool
04/29/2025 | MVTec Software GmbHThe machine vision industry is gaining significant momentum by using deep learning, a subset of artificial intelligence, which allows for the automation of entirely new applications and improved results.