UMass Amherst Engineers Use Memristors to Bypass Computing Bottleneck in Memory Critical for Artificial Intelligence
January 25, 2019 | UMass AmherstEstimated reading time: 2 minutes
Opening the way for advances in applications such as natural language understanding, machine translation, speech recognition and video surveillance, a team of researchers headed by Qiangfei Xia and Joshua Yang, electrical and computer engineers at the University of Massachusetts Amherst, says it can use memristor crossbar arrays to overcome a key bottleneck in traditional computing architecture.
The researchers say a memristor is a two-terminal “memory resistor” that performs computation at the same location where information is stored. This feature removes the need for traditional computers to transfer data between two sites, leading to a much better energy-speed efficiency. A memristor crossbar is a matrix of the tiny switches.
“Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units have led to major advances in artificial intelligence,” the researchers say. However, state-of-the-art LSTM models with significantly increased complexity and a large number of parameters have a bottleneck in computing power resulting from both limited memory capacity and limited data communication capacity.
A solution to this LSTM blockage can be implemented with a memristor crossbar array, which has a small circuit footprint, can store a large number of parameters, and offers in-memory computing capability that contributes to circumventing what is known as the von Neumann bottleneck. “We illustrate the capability of our crossbar system as a core component in solving real-world problems, and show that memristor LSTM is a promising low-power and low-latency hardware platform for edge inference.”
The von Neumann bottleneck refers to the limits on the amount of data that can be transferred and energy efficiency in a computer built using the von Neumann architecture, in which the data processing and memory units are physically separated with a single common bus in between. John von Neumann was a 20th century mathematician, scientist, and computer science pioneer who in 1945 proposed the computer architecture which is still the basis for digital computers today.
“The memristor crossbar implementation of an LSTM,” say the authors, “to the best of our knowledge, has yet to be demonstrated, primarily because of the relative scarcity of large memristor arrays. In this work, we demonstrate our experimental implementation of a core part of LSTM networks in memristor crossbar arrays.”
As a demonstration, the authors applied the memristor-based LSTM in predicting the number of airline passengers based on data from past years, and in recognizing a person according to the way she or he walks. This is important in identifying a person when the face is camouflaged or facial recognition is technically difficult. “This work shows that the LSTM networks built in memristor crossbar arrays represent a promising alternative computing paradigm with high-speed energy efficiency.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Compal Showcases Comprehensive Data Center Solutions at 2025 OCP Global Summit
10/16/2025 | Compal Electronics Inc.Global data centers are facing new challenges driven by AI – greater compute demand, larger working sets, and more stringent energy efficiency requirements. At this year’s OCP Global Summit, Compal Electronics presented a comprehensive vision for the data center of the future, delivering end-to-end solutions that cover compute, memory, and cooling.
Nvidia, Microsoft, and BlackRock Lead $40 Billion Deal to Acquire Aligned Data Centers
10/16/2025 | I-Connect007 Editorial TeamA consortium including Nvidia, Microsoft, BlackRock, and Elon Musk’s xAI has agreed to buy Aligned Data Centers in a deal valued at about $40 billion, marking one of the largest-ever data infrastructure acquisitions as tech giants race to expand capacity for artificial intelligence, the Associated Press reported on Oct. 14
TI’s New Power-management Solutions Enable Scalable AI Infrastructures
10/14/2025 | Texas InstrumentsTexas Instruments (TI) debuted new design resources and power-management chips to help companies meet growing artificial intelligence (AI) computing demands and scale power-management architectures from 12V to 48V to 800 VDC.
Yamaha Boosts Surface-Mount Programming Efficiency with Latest Software Release
10/14/2025 | Yamaha Robotics SMT SectionYamaha Robotics SMT Section has introduced enhanced software tools to accelerate new product introduction (NPI) using YSUP-PG, the program generator for the company’s surface-mounters and inspection systems.
Western Digital Opens Expanded System Integration Test Lab to Accelerate Innovation in the AI and Cloud Era
10/14/2025 | BUSINESS WIREWestern Digital, the backbone of the AI-driven data economy, announced the opening of its expanded System Integration and Test (SIT) Lab, a state-of-the-art 25,600 square foot facility designed to accelerate customer success and unlock faster time to value.