UMass Amherst Engineers Use Memristors to Bypass Computing Bottleneck in Memory Critical for Artificial Intelligence
January 25, 2019 | UMass AmherstEstimated reading time: 2 minutes
Opening the way for advances in applications such as natural language understanding, machine translation, speech recognition and video surveillance, a team of researchers headed by Qiangfei Xia and Joshua Yang, electrical and computer engineers at the University of Massachusetts Amherst, says it can use memristor crossbar arrays to overcome a key bottleneck in traditional computing architecture.
The researchers say a memristor is a two-terminal “memory resistor” that performs computation at the same location where information is stored. This feature removes the need for traditional computers to transfer data between two sites, leading to a much better energy-speed efficiency. A memristor crossbar is a matrix of the tiny switches.
“Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units have led to major advances in artificial intelligence,” the researchers say. However, state-of-the-art LSTM models with significantly increased complexity and a large number of parameters have a bottleneck in computing power resulting from both limited memory capacity and limited data communication capacity.
A solution to this LSTM blockage can be implemented with a memristor crossbar array, which has a small circuit footprint, can store a large number of parameters, and offers in-memory computing capability that contributes to circumventing what is known as the von Neumann bottleneck. “We illustrate the capability of our crossbar system as a core component in solving real-world problems, and show that memristor LSTM is a promising low-power and low-latency hardware platform for edge inference.”
The von Neumann bottleneck refers to the limits on the amount of data that can be transferred and energy efficiency in a computer built using the von Neumann architecture, in which the data processing and memory units are physically separated with a single common bus in between. John von Neumann was a 20th century mathematician, scientist, and computer science pioneer who in 1945 proposed the computer architecture which is still the basis for digital computers today.
“The memristor crossbar implementation of an LSTM,” say the authors, “to the best of our knowledge, has yet to be demonstrated, primarily because of the relative scarcity of large memristor arrays. In this work, we demonstrate our experimental implementation of a core part of LSTM networks in memristor crossbar arrays.”
As a demonstration, the authors applied the memristor-based LSTM in predicting the number of airline passengers based on data from past years, and in recognizing a person according to the way she or he walks. This is important in identifying a person when the face is camouflaged or facial recognition is technically difficult. “This work shows that the LSTM networks built in memristor crossbar arrays represent a promising alternative computing paradigm with high-speed energy efficiency.”
Suggested Items
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Smart Automation: The Power of Data Integration in Electronics Manufacturing
06/24/2025 | Josh Casper -- Column: Smart AutomationAs EMS companies adopt automation, machine data collection and integration are among the biggest challenges. It’s now commonplace for equipment to collect and output vast amounts of data, sometimes more than a manufacturer knows what to do with. While many OEM equipment vendors offer full-line solutions, most EMS companies still take a vendor-agnostic approach, selecting the equipment companies that best serve their needs rather than a single-vendor solution.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.
Priority Software Announces the New, Game-Changing aiERP
06/12/2025 | Priority SoftwarePriority Software Ltd., a leading global provider of ERP and business management software announces its revolutionary aiERP, leveraging the power of AI to transform business operations.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.