New Method Yields Higher Transition Temperature in Superconducting Materials
January 28, 2019 | University of HoustonEstimated reading time: 3 minutes

Researchers from the University of Houston have reported a new way to raise the transition temperature of superconducting materials, boosting the temperature at which the superconductors are able to operate.
The results, reported in the Proceedings of the National Academy of Sciences, suggest a previously unexplored avenue for achieving higher-temperature superconductivity, which offers a number of potential benefits to energy generators and consumers.
Electric current can move through superconducting materials without resistance, while traditional transmission materials lose as much as 10 percent of the energy between the generating source and the end user. Finding superconductors that work at or near room temperature – current superconductors require the use of a cooling agent – could allow utility companies to provide more electricity without increasing the amount of fuel required, reducing their carbon footprint and improving the reliability and efficiency of the power grid.
The transition temperature increased exponentially for the materials tested using the new method, although it remained below room temperature. But Paul C.W. Chu, chief scientist at the Texas Center for Superconductivity at UH (TcSUH) and corresponding author for the paper, said the method offers an entirely new way to approach the problem of finding superconductors that work at a higher temperature.
Chu, a physicist and TLL Temple Chair of Science at UH, said the current record for a stable high-temperature superconductor, set by his group in 1994, is 164 Kelvin, or about -164 Fahrenheit. That superconductor is mercury-based; the bismuth materials tested for the new work are less toxic, and unexpectedly reach a transition temperature above 90 Kelvin, or about -297 Fahrenheit, after first predicted drop to 70 Kelvin.
The work takes aim at the well-established principle that the transition temperature of a superconductor can be predicted through the understanding of the relationship between that temperature and doping – a method of changing the material by introducing small amounts of an element that can change its electrical properties – or between that temperature and physical pressure. The principle holds that the transition temperature increases up to a certain point and then begins to drop, even if the doping or pressure continues to increase.
Liangzi Deng, a researcher at TcSUH working with Chu and first author on the paper, came up with the idea of increasing pressure beyond the levels previously explored to see whether the superconducting transition temperature would increase again after dropping.
It worked. “This really shows a new way to raise the superconducting transition temperature,” he said. The higher pressure changed the Fermi surface of the tested compounds, and Deng said the researchers believe the pressure changes the electronic structure of the material.
The superconductor samples they tested are less than one-tenth of a millimeter wide; the researchers said it was challenging to detect the superconducting signal of such a small sample from magnetization measurements, the most definitive test for superconductivity. Over the past few years, Deng and his colleagues in Chu’s lab developed an ultrasensitive magnetization measurement technique that allows them to detect an extremely small magnetic signal from a superconducting sample under pressure above 50 gigapascals.
Deng noted that in these tests, the researchers did not observe a saturation point – that is, the transition temperature will continue to rise as the pressure increases.
They tested different bismuth compounds known to have superconducting properties and found the new method substantially raised the transition temperature of each. The researchers said it’s not clear whether the technique would work on all superconductors, although the fact that it worked on three different formulations offers promise.
But boosting superconductivity through high pressure isn’t practical for real-world applications. The next step, Chu said, will be to find a way to achieve the same effect with chemical doping and without pressure.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.