MIT Robot Combines Vision and Touch to Learn the Game of Jenga
February 1, 2019 | MITEstimated reading time: 5 minutes
The researchers tested their approach against other state-of-the-art machine learning algorithms, in a computer simulation of the game using the simulator MuJoCo. The lessons learned in the simulator informed the researchers of the way the robot would learn in the real world.
“We provide to these algorithms the same information our system gets, to see how they learn to play Jenga at a similar level,” Oller says. “Compared with our approach, these algorithms need to explore orders of magnitude more towers to learn the game.”
Curious as to how their machine-learning approach stacks up against actual human players, the team carried out a few informal trials with several volunteers.
“We saw how many blocks a human was able to extract before the tower fell, and the difference was not that much,” Oller says.
But there is still a way to go if the researchers want to competitively pit their robot against a human player. In addition to physical interactions, Jenga requires strategy, such as extracting just the right block that will make it difficult for an opponent to pull out the next block without toppling the tower.
For now, the team is less interested in developing a robotic Jenga champion, and more focused on applying the robot’s new skills to other application domains.
“There are many tasks that we do with our hands where the feeling of doing it ‘the right way’ comes in the language of forces and tactile cues,” Rodriguez says. “For tasks like these, a similar approach to ours could figure it out.”
This research was supported, in part, by the National Science Foundation through the National Robotics Initiative.
Page 2 of 2Suggested Items
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.
Altair, JetZero Join Forces to Propel Aerospace Innovation
03/26/2025 | AltairAltair, a global leader in computational intelligence, and JetZero, a company dedicated to developing the world’s first commercial blended wing airplane, have joined forces to drive next-generation aerospace innovation.
RTX's Raytheon Receives Follow-on Contract from U.S. Army for Advanced Defense Analysis Solution
03/25/2025 | RTXRaytheon, an RTX business, has been awarded a follow-on contract from the U.S. Army Futures Command, Futures and Concepts Center to continue to utilize its Rapid Campaign Analysis and Demonstration Environment, or RCADE, modeling and simulation capability.
Ansys to Integrate NVIDIA Omniverse
03/20/2025 | ANSYSAnsys announced it will offer advanced data processing and visualization capabilities, powered by integrations with NVIDIA Omniverse within select products, starting with Fluent and AVxcelerate Sensors.
Altair Releases Altair HyperWorks 2025
02/19/2025 | AltairAltair, a global leader in computational intelligence, is thrilled to announce the release of Altair® HyperWorks® 2025, a best-in-class design and simulation platform for solving the world's most complex engineering challenges.