Stretchable Rubbery Semiconductors, Rubbery Integrated Electronics
February 4, 2019 | University of HoustonEstimated reading time: 1 minute

Researchers from the University of Houston have reported significant advances in stretchable electronics, moving the field closer to commercialization.
In a paper published Friday, February 1, in Science Advances, they outlined advances in creating stretchable rubbery semiconductors, including rubbery integrated electronics, logic circuits and arrayed sensory skins fully based on rubber materials.
Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering at the University of Houston and corresponding author on the paper, said the work could lead to important advances in smart devices such as robotic skins, implantable bioelectronics and human-machine interfaces.
Yu previously reported a breakthrough in semiconductors with instilled mechanical stretchability, much like a rubber band, in 2017.
This work, he said, takes the concept further with improved carrier mobility and integrated electronics.
“We report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility … obtained by introducing metallic carbon nanotubes into a rubbery semiconductor with organic semiconductor nanofibrils percolated,” the researchers wrote. “This enhancement in carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance.”
Carrier mobility, or the speed at which electrons can move through a material, is critical for an electronic device to work successfully, because it governs the ability of the semiconductor transistors to amplify the current.
Previous stretchable semiconductors have been hampered by low carrier mobility, along with complex fabrication requirements. For this work, the researchers discovered that adding minute amounts of metallic carbon nanotubes to the rubbery semiconductor of P3HT – polydimethylsiloxane composite – leads to improved carrier mobility by providing what Yu described as “a highway” to speed up the carrier transport across the semiconductor.
In addition to Yu, the paper’s researchers include first author Kyoseung Sim, and co-authors Zhoulyu Rao, Anish Thukral and Hyunseok Shim, all of UH, and Hae-Jin Kim, a former postdoctoral researcher at UH who is now with Gyeongsang National University in Jinju, Korea.
Future work, Yu said, will involve further raising the carrier mobility and building more complex, hierarchy and high level integrated digital circuits to meet the requirements for integrated circuits, biomedical and other applications.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
NextFlex Announces New Affiliated Alabama ‘Node’ to Support Growing National Hybrid Electronics Community
10/16/2025 | PRNewswireNextFlex®, America's Hybrid Electronics Manufacturing Innovation Institute, announced the launch of a new Alabama Node. The Alabama Node will accelerate the commercialization of hybrid electronics by boosting innovation, technology transition, and adoption.
Trio Wins Nobel Prize for Groundbreaking Quantum Physics Experiments
10/08/2025 | I-Connect007 Editorial TeamU.S.-based scientists John Clarke, Michel Devoret, and John Martinis have won the 2025 Nobel Prize in Physics for “experiments that revealed quantum physics in action.” Reuters reported. Their work laid the foundation for the next generation of digital technologies, the Royal Swedish Academy of Sciences announced on Oct. 7.
Pusan National University Scientists Develop Self-Deploying Material for Next-Gen Robotics
09/02/2025 | PRNewswireThe field of robotics has transformed drastically in this century, with a special focus on soft robotics. In this context, origami-inspired deployable structures with compact storage and efficient deployment features have gained prominence in aerospace, architecture, and medical fields.
University Of Minnesota Team Claims Victory In Bright Manufacturing Challenge 2025 Round 1
08/19/2025 | EMACThe Electronics Manufacturing & Assembly Collaborative (EMAC) recently announced that Team "Rise and Grind Crew" from the University of Minnesota has emerged victorious in Round 1 of the Bright Manufacturing Challenge 2025.
IIT Kharagpur Forge Strategic Partnership with Swansea University in Advance Smart Manufacturing and Materials Research
06/18/2025 | IIT KharagpurIn a significant step towards global academic and industrial collaboration, Swansea University and the Indian Institute of Technology Kharagpur (IIT KGP) signed a Memorandum of Understanding (MoU) to deepen research partnerships, promote academic exchange, and foster innovation in advanced manufacturing and materials engineering.