New Method Improves Infrared Imaging Performance
February 11, 2019 | Northwestern UniversityEstimated reading time: 1 minute

A new method developed by Northwestern Engineering’s Manijeh Razeghi has greatly reduced a type of image distortion caused by the presence of spectral cross-talk between dual-band long-wavelength photodetectors.
The work opens the door for a new generation of high spectral-contrast infrared imaging devices with applications in medicine, defense and security, planetary sciences, and art preservation.
“Dual-band photodetectors offer many benefits in infrared imaging, including higher quality images and more available data for image processing algorithms,” said Razeghi, Walter P. Murphy Professor of Electrical and Computer Engineering in the McCormick School of Engineering. “However, performance can be limited by spectral cross-talk interference between the two channels, which leads to poor spectral contrast and prevents infrared camera technology from reaching its true potential.”
A paper outlining her work, titled “Suppressing Spectral Crosstalk in Dual-Band Long- Wavelength Infrared Photodetectors with Monolithically Integrated Air-Gapped Distributed Bragg Reflectors,” was recently published in the IEEE Journal of Quantum Electronics.
Dual-band imaging allows for objects to be seen in multiple wavelength channels through a single infrared camera. The use of dual-band detection in night-vision cameras, for example, can help the wearer better distinguish between moving targets and objects in the background.
Spectral cross-talk is a type of distortion that occurs when a portion of the light from one wavelength channel is absorbed by the second channel. The issue becomes more severe as the detection wavelengths get longer.
To suppress that, Razeghi and her group in the Center for Quantum Devices developed a novel version of a distributed Bragg reflector (DBR), a highly-refractive, layered material placed between channels that separates the two wavelengths.
While DBRs have been widely used as optical filters to reflect target wavelengths, Razeghi’s team is the first to adapt the structure to divide two channels in an antimonide type-II superlattice photodetector, an important element of night-vision cameras that the researchers previously studied.
To test their design, the team compared the quantum efficiency levels of two long-wavelength infrared photodetectors with and without the air-gapped DBR. They found notable spectral suppression, with quantum efficiency levels as low as ten percent, when using the air-gapped DBR. The results were confirmed using theoretical calculations and numerical simulation.
The research was supported by the Missile Defense Agency, Defense Advanced Research Projects Agency, US Army, and NASA.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/06/2025 | Nolan Johnson, I-Connect007Maybe you’ve noticed that I’ve been taking to social media lately to about my five must-reads of the week. It’s just another way we’re sharing our curated content with you. I pay special attention to what’s happening in our industry, and I can help you know what’s most important to read about each week. Follow me (and I-Connect007) on LinkedIn to see these and other updates.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
Siemens Leverages AI to Close Industry’s IC Verification Productivity Gap in New Questa One Smart Verification Solution
05/13/2025 | SiemensSiemens Digital Industries Software announced the Questa™ One smart verification software portfolio, combining connectivity, a data driven approach and scalability with AI to push the boundaries of the Integrated Circuit (IC) verification process and make engineering teams more productive.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.