NASA Seeks US Partners to Develop Reusable Systems to Land Astronauts on Moon
February 18, 2019 | NASAEstimated reading time: 2 minutes

As the next major step to return astronauts to the Moon under Space Policy Directive-1, NASA announced plans on December 13 to work with American companies to design and develop new reusable systems for astronauts to land on the lunar surface. The agency is planning to test new human-class landers on the Moon beginning in 2024, with the goal of sending crew to the surface in 2028.
Image Caption: Artist’s concept of a human landing system and its crew on the lunar surface with Earth near the horizon.
Through multi-phased lunar exploration partnerships, NASA is asking American companies to study the best approach to landing astronauts on the Moon and start the development as quickly as possible with current and future anticipated technologies.
“Building on our model in low-Earth orbit, we’ll expand our partnerships with industry and other nations to explore the Moon and advance our missions to farther destinations such as Mars, with America leading the way,” said NASA Administrator Jim Bridenstine. “When we send astronauts to the surface of the Moon in the next decade, it will be in a sustainable fashion.”
The agency’s leading approach to sending humans to the Moon is using a system of three separate elements that will provide transfer, landing, and safe return. A key aspect of this proposed approach is to use the Gateway for roundtrip journeys to and from the surface of the Moon.
Using the Gateway to land astronauts on the Moon allows the first building blocks for fully reusable lunar landers. Initially NASA expects two of the lander elements to be reusable and refueled by cargo ships carrying fuel from Earth to the Gateway. The agency is also working on technologies to make rocket propellants using water ice and regolith from the Moon. Once the ability to harness resources from the Moon for propellant becomes viable, NASA plans to refuel these elements with the Moon’s own resources. This process, known as in-situ resource utilization or ISRU, will make the third element also refuelable and reusable.
NASA published a formal request for proposals to an appendix of the second Next Space Technologies for Exploration Partnerships (NextSTEP-2) Broad Agency Announcement (BAA) on Feb. 7, and responses are due March 25.
According to the solicitation, NASA will fund industry-led development and flight demonstrations of lunar landers built for astronauts by supporting critical studies and risk reduction activities to advance technology requirements, tailor applicable standards, develop technology, and perform initial demonstrations by landing on the Moon.
When NASA again sends humans to the Moon, the surface will be buzzing with new research and robotic activity, and there will be more opportunities for discovery than ever before. Private sector innovation is key to these NASA missions, and the NextSTEP public-private partnership model is advancing capabilities for human spaceflight while stimulating commercial activities in space.
The President’s direction from Space Policy Directive-1 galvanizes NASA’s return to the Moon and builds on progress on the Space Launch System rocket and Orion spacecraft, efforts with commercial and international partners, and knowledge gained from current robotic presence at the Moon and Mars.
Suggested Items
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.
Airbus to Design and Build ESA’s ExoMars Rover Lander Platform
03/31/2025 | AirbusAirbus has been selected by the European Space Agency (ESA) and Thales Alenia Space (TAS - a joint venture between Thales (67%) and Leonardo (33%)), the ExoMars industrial prime contractor, to build key systems for the ExoMars lander that will safely place the Rosalind Franklin rover on the surface of the Red Planet.
The Chemical Connection: Surface Finishes for PCBs
03/31/2025 | Don Ball -- Column: The Chemical ConnectionWriting about surface finishes brings a feeling of nostalgia. You see, one of my first jobs in the industry was providing technical support for surface cleaning processes and finishes to enhance dry film adhesion to copper surfaces. I’d like to take this opportunity to revisit the basics, indulge in my nostalgia, and perhaps provide some insight into why we do things the way we do them in the here and now.
PCB007 Magazine: The Essential Guide to Surface Finishes—March 2025
03/17/2025 | I-Connect007 Editorial TeamIn the March 2025 issue of PCB007 Magazine, we go back to basics, recount a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore.
Marcy's Musings: The Golden Touch?
03/18/2025 | Marcy LaRont -- Column: Marcy's MusingsCorrosion, adhesion, bonding—the comprehensive issue of surface finish plating is primary for PCB manufacturers and their assembly counterparts. Gold is the standard for many applications, but it is expensive and has its limits. This issue of PCB007 Magazine leads with a deep dive into the various iterations of gold plating by the engineering team at MKS Atotech.