Researchers Target Edge-AI Apps with Breakthrough NVM Memory Cell
February 25, 2019 | CEA-LetiEstimated reading time: 1 minute

Researchers at CEA-Leti and Stanford University have developed the world’s first circuit integrating multiple-bit non-volatile memory (NVM) technology called Resistive RAM (RRAM) with silicon computing units, as well as new memory resiliency features that provide 2.3-times the capacity of existing RRAM. Target applications include energy-efficient, smart-sensor nodes to support artificial intelligence on the Internet of Things, or “edge AI”.
The proof-of-concept chip has been validated for a wide variety of applications (machine learning, control, security). Designed by a Stanford team led by Professors Subhasish Mitra and H.-S. Philip Wong and realized in CEA-Leti’s cleanroom in Grenoble, France, the chip monolithically integrates two heterogeneous technologies: 18 kilobytes (KB) of on-chip RRAM on top of commercial 130nm silicon CMOS with a 16-bit general-purpose microcontroller core with 8KB of SRAM.
The new chip delivers 10-times better energy efficiency (at similar speed) versus standard embedded FLASH, thanks to its low operation energy, as well as ultra-fast and energy-efficient transitions from on mode to off mode and vice versa. To save energy, smart-sensor nodes must turn themselves off. Non-volatility, which enables memories to retain data when power is off, is thus becoming an essential on-chip memory characteristic for edge nodes. The design of 2.3 bits/cell RRAM enables higher memory density (NVM dense integration) yielding better application results: 2.3x better neural network inference accuracy, for example, compared to a 1-bit/cell equivalent memory.
The technology was presented on Feb. 19, at the International Solid-State Circuits Conference (ISSCC) 2019 in San Francisco in a paper titled, “A 43pJ/Cycle Non-Volatile Microcontroller with 4.7μs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Techniques”.
But NVM technologies (RRAM and others) suffer from write failures. Such write failures have catastrophic impact at the application level and significantly diminish the usefulness of NVM such as RRAM. The CEA-Leti and Stanford team created a new technique called ENDURER that overcomes this major challenge. This gives the chip a 10-year functional lifetime when continuously running inference with the Modified National Institute of Standards and Technology (MNIST) database, for example.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.