Astronauts Assemble Tools to Test Space Tech
March 1, 2019 | NASAEstimated reading time: 1 minute

Technology drives exploration for future human missions to the Moon, Mars and beyond. For spacecraft to journey farther and live longer, we’ll need to store and transfer super-cold liquids used for fuel and life support systems in space. In December 2018, the Robotic Refueling Mission 3 (RRM3) launched to the International Space Station to do just that — transfer and store cryogenic fuel in space for the first time.
Some Assembly Required
Last week, astronauts Anne McClain of NASA and David Saint-Jacques of the Canadian Space Agency assembled the mission’s custom transfer tools and prepared them for installation on RRM3.
RRM3 consists of two primary parts: the main payload that houses the fluid, transfer lines and tanks and three external tools mounted on a pedestal. The three tools are the Multi-Function Tool 2, which operates smaller specialized tools to prepare for the fluid transfer, the Cryogen Servicing Tool 2, which uses a hose to connect the tank filled with liquid methane to the empty tank, and the Visual Inspection Poseable Invertebrate Robot 2, which uses a state-of-the-art robotic camera to make sure tools are properly positioned.
Shortly after RRM3’s arrival, the space station’s robotic arm Dextre affixed the main payload to the station. Meanwhile, the pedestal and tools made their way inside for assembly. With assembly complete, Dextre will soon attach the integrated hardware to the payload.
Looking Forward
With both parts together in one piece, RRM3 will begin operations in the next few months. Dextre will use the tools to transfer the cryogenic fuel to an empty tank and monitor the process. The technology demonstration will help make future exploration missions sustainable and prove that the whole is indeed greater than the sum of its parts.
RRM3 builds on the first two phases of International Space Station technology demonstrations that tested tools, technologies and techniques to refuel and repair satellites in orbit. It is developed and operated by the Satellite Servicing Projects Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and managed by the Technology Demonstration Missions program office within NASA’s Space Technology Mission Directorate.
Top: RRM3 tools (left to right) — Visual Inspection Poseable Invertebrate Robot 2, Cryogen Servicing Tool, Multi-Function Tool 2 — during ground testing; Bottom: Astronauts Anne McClain and David Saint-Jacques pose with the corresponding RRM3 tools aboard the International Space Station.
By Vanessa Lloyd
NASA's Goddard Space Flight Center, Greenbelt, Md.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
DARPA, State of New Mexico Establish Framework to Advance Quantum Computing
09/08/2025 | DARPAAs part of the Quantum Benchmarking Initiative (QBI), DARPA signed an agreement with the State of New Mexico’s Economic Development Department to create the Quantum Frontier Project.
LPKF Strengthens LIDE Technology Leadership with New Patent Protection in Korea
09/04/2025 | LPKFLPKF Laser & Electronics SE today announced that its groundbreaking LIDE (Laser Induced Deep Etching) technology has received additional patent protection in Korea through the Korean Patent Office (KPCA), effective September 1, 2025.
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.