The Future of Stretchable Electronics
March 25, 2019 | ACN NewswireEstimated reading time: 2 minutes
Stretchable electronics is emerging as a promising new technology for next-generation wearable devices, according to a review published in Science and Technology of Advanced Materials.
Figure 1: A wide range of stretchable electronic devices are being investigated, including this thin-film transistor matrix, showed relaxed (L) and stretched to about 60% (R). The transistor parameters remain almost unchanged upon stretching up to 140%. (Credit: Matsuhisa, N. et al. Nature Communications. 25 July 2015/Creative Commons)
Figure 2: This solar cell can be stretched (L) or twisted (R) without performance degradation. (Credit: Nam, J. et al. Scientific Reports. 8 Aug. 2017/Creative Commons)
The technology has many possible applications for healthcare, energy and the military. But there are several challenges involved in finding suitable materials and manufacturing methods. The biggest challenge for making stretchable electronics is that each component must endure being compressed, twisted and applied to uneven surfaces while maintaining performance, according to the review author Wei Wu, materials scientist at Wuhan University, China.
Many different stretchable electronic components are being developed. For instance, low-cost stretchable conductors and electrodes are being made from silver nanowires and graphene. An urgent technical problem is the need for stretchable energy conversion and storage devices, such as batteries. Zinc-based batteries are promising candidates; however, more work is required to make them commercially viable.
An alternative to batteries is stretchable nanogenerators, which can produce electricity from various freely available vibrations, such as wind or human body movements. Stretchable solar cells could also be used to power wearable electronic devices.
By integrating multiple stretchable components, such as temperature, pressure and electrochemical sensors, it is possible to create a material resembling human skin that could use signals from sweat, tears or saliva for real-time, non-invasive healthcare monitoring, as well as for smart prosthetics or robots with enhanced sense capabilities. However, at present, fabrication of artificial skin remains time-consuming and complex.
Currently there are two main strategies for manufacturing stretchable electronics. The first is to use intrinsically stretchable materials, such as rubber, which can endure large deformations. However, these materials have limitations, such as high electrical resistance.
The second method is to make non-flexible materials stretchable using innovative design. For example, brittle semiconductor materials like silicon can be grown on a pre-stretched surface and then allowed to compress, creating buckling waves. Another strategy involves linking 'islands' of rigid conductive materials together using flexible interconnections, such as soft or liquid metals. Origami-inspired folding techniques can be used to make foldable electronic devices. In the future, stretchable electronics may be enhanced with new capabilities, such as wireless communication, self-charging or even self-healing.
The next step after laboratory tests is to bring stretchable electronic devices to market. This requires cheaper materials and faster, scalable manufacturing methods, concludes the review author.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
The Training Connection Continues to Grow with Addition of Veteran IPC Trainer Bill Graver
10/30/2025 | The Training Connection LLCThe Training Connection, LLC (TTC-LLC), a premier provider of test engineering and development training, is proud to announce the addition of Bill Graver to its growing team of industry experts. A respected professional with more than 35 years in electronics manufacturing, Bill joins as an IPC Master Trainer, bringing a wealth of hands-on experience in PCB testing, failure analysis, and process improvement.
I-Connect007 Welcomes New Columnist: Leo Lambert, EPTAC
10/30/2025 | I-Connect007I-Connect007 is excited to announce a column by Leo Lambert, an industry veteran with 40 years of experience, an award winner, and technical director at EPTAC. This column, Learning With Leo, will explore the evolution and related challenges of electronics product assembly, especially as it relates to training.
Cicor to Acquire UK-Based TT Electronics with Board Support
10/30/2025 | Cicor Technologies Ltd.Cicor is a globally active provider of full-cycle electronic solutions (EMS) for the healthcare technology, industrial, and aerospace & defense sectors. TT is a UK-based, London Stock Exchange-listed global provider of engineered electronics for performance critical applications.
Building PCBs and Policy in Europe: Group ACB Champions Advocacy, Standards Development, and Technical Leadership
10/30/2025 | Linda Stepanich, Community MagazineHow does a European PCB manufacturer navigate the competitive manufacturing landscape in Europe? By participating in standards development committee meetings, testifying before the European Commission on industry issues, and sponsoring hand-soldering competitions in the region. Group ACB, based in France and Belgium, focuses on high-reliability applications. The 37-year-old company is also active in the Global Electronics Association, giving credit for helping ACB to raise awareness of electronics manufacturing in Europe.
Highlights at productronica 2025
10/29/2025 | productronicaJust a few more weeks to go before the anniversary edition of productronica. The world’s leading trade fair for the development and production of electronics celebrates its 50th anniversary this fall. From November 18 to 21, Munich will once again be the meeting place for the international electronics industry.