DTU Develops Breast Cancer Scanning Equipment
April 3, 2019 | DTUEstimated reading time: 3 minutes

DTU has entered into collaboration with the UK company Kromek aimed at developing a scanner that can improve breast cancer diagnostics.
Advanced technology developed for space research often has great potential in other fields. The new industrial research and development partnership between DTU Space and the UK company Kromek Group plc is a good example of this. Komek develops medical imaging equipment for use in hospitals, and the two partners are now working jointly to develop a completely new scanner type for screening of women for breast cancer.
DTU Space’s contribution to the scanner is an advanced and highly precise detector technology called 3D CZT, developed for space research. This technology can detect and characterize high-energy photons in the form of gamma radiation in space with pinpoint accuracy.
But the technology can also be applied in the field of medicine. Here it can be used to improve breast cancer scans in relation to conventional X-ray examinations.
“We’re pleased to be able to contribute to something as important as cancer diagnosis and the fight against cancer,” says Senior Researcher at DTU Space Irfan Kuvvetli, who is in charge of the work to develop the detector technology.
“The partnership with the industry shows the importance of our focus on constantly trying to develop new technology based on fundamental research, and that we are open to its potential applications in other fields than space research.”
Together with Kromek, DTU Space has received DKK 10 million for the project over two years under the EU-funded research and development programme Eurostars.
Small cancer tumours and their position in the breast can be identified more accurately, and the hope is to be able to diagnose breast cancer tumours far more accurately and securely than is currently the case.
With the existing equipment, there may be uncertainty about the detection of small tumours. This is especially the case for patients with high breast tissue density, and here a typical X-ray examination cannot distinguish precisely enough between the dense tissue and a tumour.
Based on Technology for Future Space Mission
DTU Space has already developed prototype detectors for space research purposes. These detectors include signal processing electronics as well as the special algorithms which are subsequently used to form very precise images based on the collected data.
The new project is based on this technology. And it looks so promising that Kromek itself contacted DTU, because the same principles can be used to detect cancer tumours.
“It’s exciting that space technology can be used in the healthcare sector. And through our collaboration with the industry, we’re looking forward to being able to supply equipment based on this technology for a high-energy space mission when this becomes relevant,” says Irfan Kuvvetli.
From Space Exploration to Cancer Screening
The detector technology which constitutes DTU Space’s contribution to the 3D MBI scanner has—in principle—been developed to examine with great accuracy so-called high-energy X-ray and gamma radiation in the form of photons from events in the universe. In a detector for examination of cancer, the objective is also to register photons with great accuracy.
The principle in the 3D MBI technology is that a weak and short-lived radioactive tracer is injected into the bloodstream of the person to be examined. The tracer is concentrated in any tumour in the breast and emits gamma rays (photons) with relatively high energy.
The detector is placed around the breast and registers the photons, making it possible to obtain a very precise high-resolution image of the size and location of a tumour.
In contrast to X-ray photons, the gamma photons are not absorbed in connection with breast tissue passage. The imaging will therefore be of a high quality—even for women with high breast tissue density.
Scientists have demonstrated that the detector—which is called 3D CZT (CdZnTe)—has a resolution of 0.5 mm in all three dimensions (x, y, z). And DTU Space has taken out two patents for the technology.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.