DTU Develops Breast Cancer Scanning Equipment
April 3, 2019 | DTUEstimated reading time: 3 minutes

DTU has entered into collaboration with the UK company Kromek aimed at developing a scanner that can improve breast cancer diagnostics.
Advanced technology developed for space research often has great potential in other fields. The new industrial research and development partnership between DTU Space and the UK company Kromek Group plc is a good example of this. Komek develops medical imaging equipment for use in hospitals, and the two partners are now working jointly to develop a completely new scanner type for screening of women for breast cancer.
DTU Space’s contribution to the scanner is an advanced and highly precise detector technology called 3D CZT, developed for space research. This technology can detect and characterize high-energy photons in the form of gamma radiation in space with pinpoint accuracy.
But the technology can also be applied in the field of medicine. Here it can be used to improve breast cancer scans in relation to conventional X-ray examinations.
“We’re pleased to be able to contribute to something as important as cancer diagnosis and the fight against cancer,” says Senior Researcher at DTU Space Irfan Kuvvetli, who is in charge of the work to develop the detector technology.
“The partnership with the industry shows the importance of our focus on constantly trying to develop new technology based on fundamental research, and that we are open to its potential applications in other fields than space research.”
Together with Kromek, DTU Space has received DKK 10 million for the project over two years under the EU-funded research and development programme Eurostars.
Small cancer tumours and their position in the breast can be identified more accurately, and the hope is to be able to diagnose breast cancer tumours far more accurately and securely than is currently the case.
With the existing equipment, there may be uncertainty about the detection of small tumours. This is especially the case for patients with high breast tissue density, and here a typical X-ray examination cannot distinguish precisely enough between the dense tissue and a tumour.
Based on Technology for Future Space Mission
DTU Space has already developed prototype detectors for space research purposes. These detectors include signal processing electronics as well as the special algorithms which are subsequently used to form very precise images based on the collected data.
The new project is based on this technology. And it looks so promising that Kromek itself contacted DTU, because the same principles can be used to detect cancer tumours.
“It’s exciting that space technology can be used in the healthcare sector. And through our collaboration with the industry, we’re looking forward to being able to supply equipment based on this technology for a high-energy space mission when this becomes relevant,” says Irfan Kuvvetli.
From Space Exploration to Cancer Screening
The detector technology which constitutes DTU Space’s contribution to the 3D MBI scanner has—in principle—been developed to examine with great accuracy so-called high-energy X-ray and gamma radiation in the form of photons from events in the universe. In a detector for examination of cancer, the objective is also to register photons with great accuracy.
The principle in the 3D MBI technology is that a weak and short-lived radioactive tracer is injected into the bloodstream of the person to be examined. The tracer is concentrated in any tumour in the breast and emits gamma rays (photons) with relatively high energy.
The detector is placed around the breast and registers the photons, making it possible to obtain a very precise high-resolution image of the size and location of a tumour.
In contrast to X-ray photons, the gamma photons are not absorbed in connection with breast tissue passage. The imaging will therefore be of a high quality—even for women with high breast tissue density.
Scientists have demonstrated that the detector—which is called 3D CZT (CdZnTe)—has a resolution of 0.5 mm in all three dimensions (x, y, z). And DTU Space has taken out two patents for the technology.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
DARPA, State of New Mexico Establish Framework to Advance Quantum Computing
09/08/2025 | DARPAAs part of the Quantum Benchmarking Initiative (QBI), DARPA signed an agreement with the State of New Mexico’s Economic Development Department to create the Quantum Frontier Project.
LPKF Strengthens LIDE Technology Leadership with New Patent Protection in Korea
09/04/2025 | LPKFLPKF Laser & Electronics SE today announced that its groundbreaking LIDE (Laser Induced Deep Etching) technology has received additional patent protection in Korea through the Korean Patent Office (KPCA), effective September 1, 2025.
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.