Northrop Grumman Carries Technology, Scientific Investigations on Mission to Space Station
April 12, 2019 | NASAEstimated reading time: 3 minutes

A Northrop Grumman Cygnus spacecraft scheduled to liftoff on April 17 carries supplies and scientific experiments to the International Space Station. It uses a new late load capability that allows time-sensitive experiments to be loaded just 24 hours before liftoff. Previously, all cargo had to be loaded about four days prior to launch, creating challenges for some types of experiments.
The launch on the company’s Antares rocket departs from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility on Wallops Island, Virginia. This Cygnus mission is the 11th and final under Northrop’s Commercial Resupply Services (CRS)-1 contract with NASA; a CRS-2 contract begins with a cargo launch in the fall. Resupply missions from U.S. companies ensure NASA’s capability to deliver critical science research to the space station and significantly increase its ability to conduct new investigations in the only laboratory in space.
Here are some of the scientific investigations Cygnus delivers to the space station:
Models for Growing Increasingly Complex Materials
Advanced Colloids Experiment-Temperature-10 (ACE-T-10) investigates the growth, microscopic dynamics, and restructuring processes in ordered and disordered structures such as colloidal crystals, glasses, and gels.
Colloids provide ideal models for researching the fundamental principles of internal organization in such structures because their particles are small enough to engage in relevant phenomena, yet large enough for detailed study. Colloidal system interactions vary precisely with temperature and undergo a variety of transitions including crystallization and glass formation. Conducting the study in microgravity removes the effects of gravitational stresses.
Better Life Science Research in a Few Drops
Bio-Analyzer, a Canadian Space Agency (CSA) instrument, enhances life sciences research capabilities on the space station. It performs on-orbit detection and quantification of cell surface molecules on a per cell basis, including blood cell counts, and assesses soluble molecule concentration in a liquid sample such as blood, saliva, or urine. Part of the Life Science Research System (LSRS), the Bio-Analyzer uses just a few drops of liquid – a finger prick versus a standard blood draw, for example – and eliminates the need for freezing and storing samples.
Analyzing Aging of the Arteries in Astronauts
Recent research suggest links between cardiovascular health risk, carotid artery aging, bone metabolism and blood biomarkers, insulin resistance, and radiation. Data also indicate accelerated aging-like changes in many astronauts on the space station, including changes to their arteries. The Space Environment Causes Acceleration of Vascular Aging: Roles of Hypogravity, Nutrition, and Radiation (Vascular Aging) looks at these changes using artery ultrasounds, blood samples, oral glucose tolerance tests, and wearable sensors. It is one of three related Canadian experiments studying the effects of weightlessness on the blood vessels and heart.
Testing Immune Response in Space
Tetanus Antibody Response by B cells in Space (RR-12) examines the effects of spaceflight on the function of antibody production and immune memory. Spaceflight has a dramatic influence on human immune response, but there is little research on how that affects the body’s immune system response to an actual challenge. Using a mouse model makes it possible to examine this question since the mouse immune system closely parallels that of humans.Page 1 of 2
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
AV Switchblade 600 Loitering Munition System Achieves Pivotal Milestone with First-Ever Air Launch from MQ-9A
09/12/2025 | BUSINESS WIREAeroVironment, Inc. (AV) a global leader in intelligent, multi-domain autonomous systems, announced its Switchblade 600 loitering munition system (LMS) has achieved a significant milestone with its first-ever air launch from an MQ-9A Reaper Unmanned Aircraft System (UAS).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.