Lasers Make Magnets Behave Like Fluids
April 19, 2019 | University of Colorado BoulderEstimated reading time: 3 minutes

For years, researchers have pursued a strange phenomenon: When you hit an ultra-thin magnet with a laser, it abruptly de-magnetizes. Imagine the magnet on your refrigerator suddenly falling off.
Now, scientists at CU Boulder are digging into how magnets recover from that change, regaining their properties in a fraction of a second.
According to a study published this week in Nature Communications, zapped magnets actually behave like fluids. Their magnetic properties begin to form “droplets,” similar to what happens when you shake up a jar of oil and water.
To find that out, CU Boulder’s Ezio Iacocca, Mark Hoefer and their colleagues drew on mathematical modeling, numerical simulations and experiments conducted at Stanford University’s SLAC National Accelerator Laboratory.
“Researchers have been working hard to understand what happens when you blast a magnet,” said Iacocca, lead author of the new study and a research associate in the Department of Applied Mathematics. “What we were interested in is what happens after you blast it. How does it recover?”
In particular, the group zeroed in on a short but critical time in the life of a magnet—the first 20 trillionths of a second after a magnetic, metallic alloy gets hit by a short, high-energy laser.
Iacocca explained that magnets are, by their nature, pretty organized. Their atomic building blocks have orientations, or “spins,” that tend to point in the same direction, either up or down—think of Earth’s magnetic field, which always points north.
Image caption: Magnetic "droplets" juxtaposed with image of oil and water.
Except, that is, when you blast them with a laser. Hit a magnet with a short enough laser pulse, Iacocca said, and disorder will ensue. The spins within a magnet will no longer point just up or down, but in all different directions, canceling out the metal’s magnetic properties.
“Researchers have addressed what happens 3 picoseconds after a laser pulse and then when the magnet is back at equilibrium after a microsecond,” said Iacocca, also a guest researcher at the U.S. National Institute of Standards and Technology (NIST). “In between, there’s a lot of unknown.”
The Unknown
It’s that missing window of time that Iacocca and his colleagues wanted to fill in. To do that, the research team ran a series of experiments in California, blasting tiny pieces of gadolinium-iron-cobalt alloys with lasers. Then, they compared the results to mathematical predictions and computer simulations.
And, the group discovered, things got fluid. Hoefer, an associate professor of applied math, is quick to point out that the metals themselves didn’t turn into liquid. But the spins within those magnets behaved like fluids, moving around and changing their orientation like waves crashing in an ocean.
“We used the mathematical equations that model these spins to show that they behaved like a superfluid at those short timescales,” said Hoefer, a co-author of the new study.
Wait a little while and those roving spins start to settle down, he added, forming small clusters with the same orientation—in essence, “droplets” in which the spins all pointed up or down. Wait a bit longer, and the researchers calculated that those droplets would grow bigger and bigger, hence the comparison to oil and water separating out in a jar.
“In certain spots, the magnet starts to point up or down again,” Hoefer said. “It’s like a seed for these larger groupings.”
Hoefer added that a zapped magnet doesn’t always go back to the way it once was. In some cases, a magnet can flip after a laser pulse, switching from up to down.
Engineers already take advantage of that flipping behavior to store information on a computer hard drive in the form of bits of ones and zeros. Iacocca said that if researchers can figure out ways to do that flipping more efficiently, they might be able to build faster computers.
“That’s why we want to understand exactly how this process happens,” Iacocca said, “so we can maybe find a material that flips faster.”
The research was partly supported by the U.S. Department of Energy, Basic Energy Sciences.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Revolutionizing PCB Manufacturing with Laser Technology from MKS' ESI
04/16/2025 | Real Time with...IPC APEX EXPOIn this interview, Barry Matties speaks with Casey Krueger from MKS' ESI. MKS' ESI focuses on laser-based micro machining for PCBs, especially in HDI and IC substrates. The Geode CO2 drilling system, launched in 2019, uses AOD technology to transform the market. Trends show a shift toward smaller vias for advanced packaging, with laser drilling concentrated in Asia. North America sees rising investments in laser tech, prioritizing quality, productivity, and energy efficiency, while AI integration boosts ESI's operations.
Real Time With... IPC APEX EXPO 2025: Best Student Technical Paper Winner—Attila Rektor
04/10/2025 | Marcy LaRont, I-Connect007Attila Rektor, a Ph.D student from Boise State, won the best technical paper award at IPC APEX EXPO 2025. His paper explores enhancing the conductivity of laser-induced graphene for flexible circuits. The research, funded by SAIC, involved modulating surface energy to enable effective copper plating. This breakthrough has potential applications in flexible printed circuit boards, sensing, and biomedical devices.
Real Time with... IPC APEX EXPO 2025: Schmoll America—Committed to Supporting Customers
03/31/2025 | Real Time with...IPC APEX EXPOKurt Palmer of Schmoll America and Stephan Kunz of Schmoll Maschinen GmbH had a great show, reporting solid attendance and good opportunities, as Schmoll America celebrates its first anniversary. With a booth full of equipment for attendees to see and touch, they showcased unique products like the Pico laser and X-ray machine, and discussed plans for a new facility.
LPKF Reports Results for Full Year 2024
03/27/2025 | LPKFThe technology company LPKF Laser & Electronics SE published today its annual report for 2024. Despite the challenging economic conditions for the German mechanical engineering industry, LPKF was able to maintain its revenue slightly below the previous year's level at EUR 122.9 million.
Queen's University Belfast Enhances RF Research with LPKF ProtoLaser R4
03/26/2025 | LPKFThe Centre for Wireless Innovation (CWI) at Queen's University Belfast relies on the state-of-the-art LPKF ProtoLaser R4 to conduct RF research with high-precision structuring of sensitive materials.