-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Alun Morgan on Thermal Management and LEDs in Automotive
April 25, 2019 | Judy WarnerEstimated reading time: 18 minutes
Morgan: We came to the coefficient of thermal expansion (CTE). These devices are built with a ceramic package that has around a 10 ppm per degree Celsius (°C) expansion rate. This is then mounted on copper which has around a 16 ppm per °C expansion rate. Then, we had the dielectric, which is pretty thin. Under that, aluminium was expanding and contracting at around 23 ppm per °C. So, you go from 10 to 16 to 23, and because this aluminium block is pretty big, the force of expansion was running right through the dielectric, through the copper, and fracturing the solder joints.
That was the case on one occasion. The other case was also related to CTE. That time, there was a fracture in the copper rather than the solder, but it was the same issue—23 ppm against 16 ppm cycled over and over from cold to hot. The modular expansion was enough to cause that failure. In the end, the solution was the same for both, which was great. We redesigned the dielectric to where the dielectric had a much lower modulus.
Elastic modulus is how much it moves for the stress you apply to it. So, a very stiff material has a high modulus. If you apply a large stress to this material, it doesn’t move very much. In that case, all of the energy from the expansion of the aluminium is passed straight through the dielectric, because it’s stiff, to the solder. You could lower the modulus by making it softer; then, you can make sure some energy is absorbed in the dielectric layer. The aluminium still expands, but all of that energy is not being passed anymore because this layer acts as a buffer between the aluminium and the next copper.
First, we softened the material and made it have a lower modulus. Second, we looked at the aluminium. As we don’t use pure aluminium you can have different alloys of aluminium. We took the 23 ppm that we’re used to running with and took it down to 19. So, we dropped from 23 to 19, copper 16, the package was 10, and the dielectric allowed this softer lower modulus so that we could absorb some there. That reached the point where we could pass 3,000 cycles.
Warner: Interesting. So when you were adjusting the modulus, were you trying to match among the materials so that they would move more or expand and contract at the same rate?
Morgan: Not so much match, but more try to avoid transferring that big expansion to the next material and try to use a buffer layer. Imagine putting a layer of rubber somewhere that can absorb stress, stretch, and move around. Or imagine having a layer of glass that can’t move or absorb stress. If you hit a piece of glass with a hammer, it shatters. When you hit a piece of rubber with a hammer, it just absorbs it and can take that bit of stress and dissipate it. That’s more or less the condition we had and the two things that were required.
So, we had to change the modulus of the dielectric, which is unreinforced; there’s no glass in there. It’s very thin, so we have very high heat transfer rates, which is also required. And to manage the CTE of the aluminium, those two things gave us that 3,000-cycle window the OEM needed. Also, this took a while to do because there are also qualification cycles; for example, 3,000 cycles from -40°C to +150°C doesn’t happen in any time less than 3,000 cycles. We had to do this on a number of test coupons and the original cycles. And not everything failed. We were talking around 20–30% fails of 3,000, so it wasn’t everything, but it was marginal, and we don’t talk about marginal with automotive; it has to be zero defect, and we have to pass.
A big test program was required to do this, which took some time. But having done that, the solution was then made available to the OEM through the T1 supplier worldwide. That is an important point of the Ventec supply chain; it means making the solution. We didn’t make it for only one person; it was for anyone who encountered that kind of issue, which is many. There are many global suppliers in the automotive sector with the same application areas, and we gave them all the solution. That was the critical part of Ventec’s global presence that played into the equation. Sometimes, there can be a solution found that’s very unique and specific.
Warner: For one OEM or supplier.
Morgan: Right, but normally, they don’t like that. The T1 supplier may propose it, but the OEM says, “What happens if you stop doing that and then I don’t have a supply chain?” Typically, they require a couple of sources, which is important for us to recognize. We wanted to make the solution available to all, and that was a primary driver. Having developed it, we made it available to all T1 suppliers around the world.
Warner: When you presented on this topic, what response did you receive?
Morgan: The response was positive and there were good questions too. I talked a bit about the science behind it, but I think the case studies were useful because everyone understands test cycles and how things need to be qualified for automotive. Some of the audience hadn’t considered using the PCB as the thermal interconnect. Many of them use thermal interface materials and heat sinks. That’s their standard thinking, so we deal with the electrical interconnect; then, after having done that, we deal with thermal management.
It was a great theme because the guys from MacDermid Alpha Electronics Solutions started with the same theme as well. They said, “Here, we have an electrical interconnect. We also have a mechanical structure required.” From the beginning, they showed how these two came together. Then, I added the thermals, which is also a mechanical property to the electricals. I showed that all of these things should come together, and that interconnect of the PCB can serve multiple purposes.
Page 2 of 4
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Learning With Leo: UHDI—The Next Leap in PCB Manufacturing
11/05/2025 | Leo Lambert -- Column: Learning With LeoHigh density interconnect (HDI) technology has been a cornerstone of miniaturized electronics since Hewlett-Packard introduced the first chip-scale implementation in 1982. Over time, HDI processes became central to organic flip-chip packaging in the semiconductor industry. Today, the convergence of IC substrates and system-level PCBs has accelerated the adoption of UHDI.
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.