Quantum Measurement Could Improve Gravitational Wave Detection Sensitivity
May 2, 2019 | MITEstimated reading time: 7 minutes
Minuscule Mirrors
To address this imminent issue, Mavalvala, Aggarwal, and their collaborators designed an experiment to recreate the effects of QRPN in a laboratory setting. One challenge was that the team could not use lasers as powerful as those in Advanced LIGO in their lab experiments. The greater the laser power and the lighter the mass of the mirror oscillator, the stronger the radiation pressure-driven motion. To be able to detect this motion with less laser power, they needed to create an extremely low-mass mirror oscillator. They scaled down the 40-kilogram mirrors of Advanced LIGO with a 100-nanogram mirror oscillator (less than the mass of a grain of salt).
The team also faced the significant challenge of designing a mirror oscillator that could exhibit quantum behavior at room temperature. Previously, observing quantum effects like QRPN required cryogenic cooling so that the motion due to heat energy of the oscillator would not mask the QRPN. In addition to being challenging and impractical, vibrations associated with cryogenic cooling interferes with LIGO’s operation, so conducting experiments at room temperature would be more readily applicable to LIGO itself. After many iterations of design and testing, Mavalvala and her MIT colleagues designed a mirror oscillator that allowed the team to reach a low enough level of thermally driven fluctuations that the mirror motion was dominated by QRPN at room temperature — the first-ever study to do so.
“It’s really pretty mind-boggling that we can observe this room-temperature, macroscopic object — you can see it with the naked eye if you squint enough — being pushed around by quantum fluctuations,” Mavalvala says. “Its thermal jitter is small enough that it’s being tickled ever-so-slightly by quantum fluctuations, and we can measure that.”
This was also the first study to detect QRPN at frequencies relevant to gravitational wave detectors. Their success means that they can now design additional experiments that reflect the radiation pressure conditions in Advanced LIGO itself.
“This experiment mimics an important noise source in Advanced LIGO,” says Mavalvala. “It's now a test bed where we can try out new ideas for improving Advanced LIGO without impinging on the instrument’s own operating time.”
Advanced LIGO does not yet run its lasers at strong enough power for QRPN to be a limiting factor in gravitational wave detections. But, as the instruments become more sensitive, this type of noise will soon become a problem and limit Advanced LIGO’s capabilities. When Mavalvala and her collaborators recognized QRPN as an imminent issue, they strove to recreate its effects in the laboratory so that they can start exploring ways to overcome this challenge.
“We've known for a long time that this QRPN would be a limitation for Advanced LIGO,” says Mavalvala. “Now that we are able to reproduce that effect in a laboratory setting, we can start to test ideas for how to improve that limit.”
Mavalvala’s primary collaborator at LSU was Thomas Corbitt, an associate professor of physics and astronomy. Corbitt was formerly a graduate student and post-doctoral scholar in Mavalvala’s lab at MIT. They have since collaborated for many years.
“This is the first time this effect has been observed in a system similar to gravitational wave interferometers and in LIGO’s frequency band,” says Corbitt. “While this work was motivated by the imperative to make ever-more-sensitive gravitational wave detectors, it is of wide interest.”
New Directions
Since the original detection of a binary black hole merger in 2015, LIGO has also captured signals from collisions of neutron stars, as well as additional black hole collisions. These waves ripple outward from interactions that can take place more than a billion light years away. While LIGO’s capabilities are impressive, Mavalvala and her team plan to continue finding ways to make LIGO even more powerful.
Before they collide, black holes, for example, orbit each other slowly and at lower frequencies. As the two black holes get closer, their orbits speed up and they swirl around each other at high speeds and high frequencies. If Advanced LIGO becomes sensitive enough to pick up lower frequencies, Mavalvala says we may someday detect these systems earlier in the process, before the pair collides, allowing us to draw an ever-clearer picture of these distant spacetime phenomena. She and her team aim to make sure that factors such as QRPN don’t limit Advanced LIGO’s growing power.
“At this moment in time, Advanced LIGO is the best it can be at its job: to look out at the sky and detect gravitational wave events,” says Mavalvala. “In parallel, we have all of these ideas for making it better, and we have to be able to try those out in laboratories. This measurement allows that to happen with QRPN for the first time.”
Page 2 of 2Suggested Items
Global Dry Film Photoresist Market Set for Robust Growth with Expanding Semiconductor Ecosystem
06/24/2025 | PRNewswireIn 2024, the global market size of Dry Film Photoresist was estimated to be worth US$939 million and is forecast to reach approximately US$1191 million by 2031 with a CAGR of 3.5% during the forecast period 2025-2031.
Benchmark Strengthens Presence in Jalisco with Grand Opening of Advanced Manufacturing Facility in Guadalajara
06/21/2025 | BUSINESS WIREBenchmark Electronics, Inc., a global provider of engineering, design, and manufacturing services, celebrated the grand opening of its brand-new manufacturing facility in Guadalajara, Mexico.
NHanced Semiconductors VP Charles Woychik to Deliver Keynote at SMTA’s Symposium on Counterfeit Parts & Materials
06/18/2025 | NHanced SemiconductorsAt the upcoming SMTA Symposium on Counterfeit Parts & Materials, NHanced Semiconductors vice-president Dr. Charles Woychik will deliver a keynote address detailing the critical role of advanced packaging technologies needed to build a more resilient and advanced Outsourced Assembly and Test (OSAT) sector in the U.S. A strategic focus on advanced packaging technologies.
SEMI MEMS & Sensors Industry Group Invites Proposals for Funding Positioning, Navigation and Timing Technology Advancements
06/12/2025 | SEMIThe MEMS & Sensors Industry Group (MSIG), a SEMI Technology Community, announced a Request for Proposals (RFP) for advanced technology development of positioning, navigation and timing (PNT) components and systems, including their manufacture. The full RFP document includes more information on the proposal submission process.
DuPont/Qnity Innovators in Semiconductor Materials Named 2025 Heroes of Chemistry
06/10/2025 | DuPontDuPont today announced that 13 of its current and former scientists and engineers have been named 2025 Heroes of Chemistry by the American Chemical Society (ACS) for an innovative program that progressed semiconductor lithography.