Thermomechanical Micromachine Detects Terahertz Radiation
May 16, 2019 | University of TokyoEstimated reading time: 1 minute
Radiation from many parts of the electromagnetic spectrum has been harnessed for extremely beneficial uses, in fields as diverse as medicine, imaging and photography, and astronomy. However, the terahertz (THz) region of the spectrum, situated between microwaves and infrared light, has been relatively underutilized owing to difficulties in generating such radiation artificially and in building devices to detect it.
In a breakthrough in the field of terahertz detection, researchers at The University of Tokyo and colleagues have created a thermomechanical device that can sense radiation in the terahertz region of the spectrum in a sensitive and rapid manner, without the need for intense cooling to cryogenic temperatures such as ?270ºC. This device potentially opens up a range of new applications for THz technologies, such as THz cameras.
In this study, reported in the Journal of Applied Physics, the team made use of the heat generated by THz radiation in order to detect it. Specifically, they created a device featuring a tiny beam suspended across a gap, which they then coated with a resistive metal film [nickel-chromium (NiCr) in this case]. This metal film has the ability to absorb THz radiation, which in turn transfers heat to the beam as a whole. This increase in temperature causes the beam to expand very slightly, which can be detected as a change in the frequency at which the beam resonantly vibrates.
"Using our doubly clamped microelectromechanical beam made of gallium arsenide, we could effectively sense THz radiation at room temperature," corresponding author Kazuhiko Hirakawa says. "This structure is particularly effective as it can detect THz radiation very quickly, typically 100 times faster than other conventional room-temperature thermal THz sensors."
This new approach has a range of advantages over existing alternatives for the detection of THz radiation. The fact that it can function at room temperature without the need for cooling makes it suitable for a range of real-world applications. It is also extremely sensitive, detecting radiation that causes changes in temperature as small as one-millionth of a degree.
"Another advantage of this system is that it can be produced using standard methods for fabricating semiconductor devices, which would potentially allow its incorporation into mass-produced THz-based sensors and cameras," according to lead author Ya Zhang. "We hope that our work will lead to an explosion of interest and further innovation in this field."
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Smart Eye Collaborates with Sony on Next-Generation Interior Sensing and Iris Authentication
10/09/2025 | Smart EyeSmart Eye AB, the global leader in Interior Sensing AI and Driver Monitoring Systems (DMS), announced a collaboration with Sony Semiconductor Solutions Corporation (Sony) to integrate Smart Eye’s interior sensing and biometric authentication software with Sony’s newly released IMX775 RGB-IR image sensor.
SEMICON Europa 2025 to Highlight Innovations in Advanced Packaging, Fab Management, and MEMS and Imaging Sensors to Bolster Europe’s Semiconductor Resilience
10/03/2025 | SEMISemiconductor industry experts will convene at SEMICON Europa 2025, November 18-21 at Messe München in Munich, to explore the latest trends and innovations in advanced packaging and fab management.
MEMS & Imaging Sensors Summit to Spotlight Sensing Revolution for Europe’s Leadership
09/11/2025 | SEMIIndustry experts will gather November 19-20 at the SEMI MEMS & Imaging Sensors Summit 2025 to explore the latest breakthroughs in AI-driven MEMS and imaging optimization, AR/VR technologies, and advanced sensor solutions for critical defence applications.
Direct Imaging System Market Size to Hit $4.30B by 2032, Driven by Increasing Demand for High-Precision PCB Manufacturing
09/11/2025 | Globe NewswireAccording to the SNS Insider, “The Direct Imaging System Market size was valued at $2.21 Billion in 2024 and is projected to reach $4.30 Billion by 2032, growing at a CAGR of 8.68% during 2025-2032.”
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.