Bring on Faster Internet: Device Packs More Into Optical Fibre
May 21, 2019 | University of QueenslandEstimated reading time: 1 minute

A research team has developed a light beam device that could lead to faster internet, clearer images of space and more detailed medical imaging.
University of Queensland researcher and optical engineer Dr Joel Carpenter worked with Nokia Bell Labs to build the device to tackle the challenge of splitting light into the shapes it is made up of, known as modes.
“Splitting a beam of light into colours is easy because nature gives you that one for free—think of rainbows or when light shines through glass at an angle,” Dr Carpenter said.
“The mode sorter splits a light beam into modes, instead of pixels like a camera would, and this results in higher-quality imaging and communication.
“Our device performs a basic operation in physics, so it seemed a little strange to us that something like this did not already exist, as this topic had been investigated around the world for about 25 years.”
Study co-author Nicolas Fontaine of Nokia Bell Labs said the device could bring a number of benefits.
“Each of these modes can be its own independent channel of information, and with this device we can pack hundreds of modes into a single optical fibre,” Dr Fontaine said.
“This can greatly increase the amount of information that can travel through that fibre, leading to faster internet speeds for more people.
“We hope this device will aid many applications that work with light beams, due to its functionality and the relative simplicity with which it can be built.”
Dr Carpenter said the mode sorter could improve imaging quality, from small biomedical images to large astronomical images.
“Just as an image can be made by adding a bunch of pixels together, we can make an image or beam by adding together a bunch of these modes,” he said.
“Some things are easier to detect if you look at the modes rather than pixels, because it is displaying the image in a different form.
“For example, modes could make it easier to detect an image of a planet orbiting a far-away star.”
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Orbel Corporation Integrates Schmoll Direct Imaging
06/04/2025 | Schmoll AmericaOrbel Corporation in Easton, PA, proudly becomes the first PCM facility in the U.S. equipped with Schmoll’s MDI Direct Imaging system. This installation empowers Orbel to support customers with greater precision and quality.
Key Insights on Photoresist for Defect Reduction
05/21/2025 | I-Connect007 Editorial TeamIn PCB manufacturing, understanding the intricacies of the photoresist process is crucial for achieving high-quality results. Industry experts Josh Krick, a technical service engineer at IEC, and Tim Blair, a PCB imaging specialist at Tim Blair LLC, share their knowledge on the essential stages of photoresist application, highlight critical advancements in materials, and discuss common defects encountered during production. They share best practices and innovative solutions to enhance the manufacturing process, reduce defects, and ensure efficiency and reliability in high-tech applications.
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.