NIST Infrared Frequency Comb Measures Biological Signatures
June 14, 2019 | NISTEstimated reading time: 3 minutes

Researchers at the National Institute of Standards and Technology (NIST) and collaborators have demonstrated a compact frequency-comb apparatus that rapidly measures the entire infrared band of light to detect biological, chemical and physical properties of matter. Infrared light travels in waves longer than visible light and is most familiar as the radiation associated with heat.
Image Caption: NIST’s tabletop frequency comb apparatus (foreground) can quickly identify molecules based on their absorption of infrared light. The yellow squiggle at the top of the screen is the electric field of mid-infrared laser light that has passed through air in the lab. The orange pattern at the bottom of the screen shows the corresponding spectrum of the light, with the downward spikes indicating the exact colors absorbed by water detected in the air.
The NIST setup, which occupies just a few square feet of table space, has potential applications such as disease diagnosis, identification of chemicals used in manufacturing, and biomass energy harvesting. The work is described in Science Advances.
Optical frequency combs measure exact frequencies, or colors, of light. Various comb designs have enabled the development of next-generation atomic clocks and show promise for environmental applications such as detecting methane leaks. Biological applications have been slower to develop, in part because it’s been hard to directly generate and measure the relevant infrared light.
To showcase biological applications, the NIST team used the new apparatus to detect “fingerprints” of NIST’s monoclonal antibody reference material, a protein made of more than 20,000 atoms that is used by the biopharmaceutical industry to ensure the quality of treatments.
“For the first time our frequency combs have simultaneous coverage across the entire infrared molecular fingerprint region,” project leader Scott Diddams said. “Other key advantages are speed, resolution and dynamic range in acquiring data.”
Mid-infrared light is an especially useful research probe because molecules usually rotate and vibrate at these frequencies. But until now it’s been difficult to probe this region due to a lack of broadband or tunable light sources and efficient detectors such as those available for visible and near-infrared light, the part of the infrared spectrum closest to visible light.
The new NIST apparatus overcomes these problems. Simple fiber lasers generate light spanning the entire range used to identify molecules—that is, mid-infrared to far-infrared wavelengths of 3-27 micrometers (frequencies of approximately 10-100 terahertz). The amounts of light absorbed at specific frequencies provide a unique signature of a molecule. The new system is innovative in detecting the electric fields of the absorbed light using photodiodes (light detectors) operating in the near-infrared range.
“A unique feature is that we detect signals in real time by rapidly sampling the infrared electric field with a near-infrared laser,” Diddams explained. “This has two advantages: It shifts the detection from the infrared to the near-infrared where we can use inexpensive telecommunications photodiodes, and we no longer suffer from the limitations of infrared detectors, which require cryogenic (liquid nitrogen) cooling.”
The researchers detected signature vibrations of three bands of amides (chemical groups containing carbon, oxygen, nitrogen and hydrogen) in the monoclonal antibody reference material. Amide bands in proteins are used to determine the folding, unfolding and aggregating mechanisms. Specific features of the detected bands indicated that the protein has a sheet structure, agreeing with previous studies. Sheets connect chemical groups in a flat arrangement.
In addition to biological applications, the new apparatus might be used to detect interactions between infrared light and condensed matter for quantum computing approaches that store data in molecular vibrations or rotations. In addition, when combined with novel imaging techniques, the tabletop system could obtain nanometer-scale images of samples that currently require the use of a much larger synchrotron facility.
Suggested Items
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: MivaTek is Revolutionizing Circuit Board Manufacturing with DART Technology
04/02/2025 | Real Time with...IPC APEX EXPOBrendan Hogan from MivaTek Global discusses the company's focus on direct imaging for circuit boards and semiconductors. MivaTek is introducing DART technology for dynamic feature size adjustments. This technology enhances precision, improving registration and throughput.