Building the Tools of the Next Manufacturing Revolution
June 18, 2019 | MITEstimated reading time: 6 minutes

Over a century ago, a visitor to Henry Ford’s new assembly line in Highland Park, Michigan, could watch workers build automobiles from interchangeable parts, and witness a manufacturing revolution in progress.
Today, someone who wants to glimpse the future of manufacturing should make a visit to John Hart’s lab. Through projects including next-generation 3-D printers, carbon nanotube fibers for use in electric motors and lightweight composites, and printing flexible materials for medical devices, Hart and his research group are developing technologies to reimagine the way things are made, from the nanoscale to the scale of the global economy.
Hart, an associate professor of mechanical engineering at MIT and the director of the Laboratory for Manufacturing and Productivity and the Center for Additive and Digital Advanced Production Technologies, is an expert in 3-D printing, also known as additive manufacturing, which involves the computer-guided deposition of material layer by layer into precise three-dimensional shapes. (Conventional manufacturing usually entails making a part by removing material, for example through machining, or by forming the part using a mold tool.)
Hart’s research includes the development of advanced materials — new types of polymers, nanocomposites, and metal alloys — and the development of novel machines and processes that use and shape materials, such as high-speed 3-D printing, roll-to-roll graphene growth, and manufacturing techniques for low-cost sensors and electronics.
“In my lab, through our partnerships with industry and via the startup companies I’m involved in, we’re seeking to redefine manufacturing at scale and rethink how resources are committed to manufacturing throughout the product life cycle,” Hart says. “One major focus is creating new kinds of 3-D printers. These are printers that are 10 to 100 times faster, more accurate, and process both well-known materials and materials that have never been possible before.”
A focus on applications and scale
Hart grew up in the Detroit area — one of the country’s great manufacturing hubs since Henry Ford’s time — and studied mechanical engineering as an undergraduate at the University of Michigan. He spent summers interning for General Motors, and when he started in the master’s degree program in mechanical engineering at MIT, he thought he would eventually make his way back to the auto industry.
Once he got to Cambridge, though, new horizons opened up. “Coming to MIT, I simply enjoyed the environment, the sense of challenge, learning, and open-mindedness,” he says.
Hart’s work with his advisor, professor of mechanical engineering Alexander Slocum, sparked an interest in nanomaterials manufacturing. He decided to pursue a PhD investigating new ways to build carbon nanotubes, which are long molecules that are stronger than steel and more conductive than copper.
When he returned to MIT in 2013 as a new faculty member, after several years as a professor at the University of Michigan, he started exploring another new frontier: 3-D printing.
As the director of the newly formed MIT Center for Additive and Digital Advanced Production Technologies and the co-founder of two Boston-area 3-D printing startups — Desktop Metal and VulcanForms — Hart is advancing this frontier on multiple fronts, through education, entrepreneurship, and engagement with industry.
Although the research projects in his lab span from the nanoscale to the macroscale, he has an eye trained on the bigger picture. Leveraging advances in computation, digitization, and automation, along with his own expertise with materials processing and machine design, Hart’s group sees the potential for 3-D printing to dramatically streamline and speed up global supply chains. The group is also pursuing a series of projects related to Hart’s longstanding interest in carbon nanotubes, exploring ways to form nanotubes into advanced wires, fibers, and structural composites.
Hart sees this convergence of digitally driven manufacturing technologies as a means of overcoming the logistical hurdles of long lead times, complex supply chains, and steep capital requirements.
And, he is motivated by finding new applications to benefit society at large. “That could be a better medical implant or sensor to measure the health of soil, a wire that is more conductive than copper, or a new business enabled by rapid access to 3-D printing in a dense city or a rural environment,” he says.
“If you want to make a new medical device, or even an automotive part, think of the supply chain you have to figure out and manage. Every part requires a lot of detail, time and investment to design, validate, and eventually produce, whether it’s made locally or overseas. One reason 3-D printing is fundamentally different is that it allows designers and engineers to iterate more quickly, and to, in the near future, produce parts on demand in large quantities without fixed up-front investment.”
Page 1 of 2
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.