Robot Arm Tastes With Engineered Bacteria
June 28, 2019 | UC DavisEstimated reading time: 2 minutes
A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.
“Our long-term vision is about building a synthetic microbiota for soft robots that can help with repair, energy generation or biosensing of the environment,” said Cheemeng Tan, assistant professor of biomedical engineering at UC Davis.
Soft robotics uses lightweight, flexible and soft materials to create machines that match the versatility of living things, and soft robot designs often draw inspiration form nature. Adding actual living cells to soft robots brings scientists another step closer to creating biological-mechanical hybrid machines.
“By combining our work in flexible electronics and robotic skin with synthetic biology, we are closer to future breakthroughs like soft biohybrid robots that can adapt their abilities to sense, feel and move in response to changes in their environmental conditions,” said Carmel Majidi, a co-author and associate professor of mechanical engineering at CMU.
Biosensing with Engineered Bacteria
The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.
When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.
As a test, the gripper was able to check a laboratory water bath for IPTG then decide whether or not to place an object in the bath.
So far, this biohybrid bot can only taste one thing and it’s difficult to design systems that can detect changing concentrations, Tan said. Another challenge is to maintain a stable population of microbes in, or on, a robot — comparable to the microbiome or ecosystem of bacteria and fungi that live in or on our own bodies and carry out many useful functions for us.
Biohybrid systems potentially offer more flexibility than conventional robotics, he said. Bacteria could be engineered for different functions on the robot: detecting chemicals, making polymers for repairs or generating energy, for example.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
Elkem Launches Biocompatible, Conductive SILBIONE LSR for Advanced Medical Devices
10/23/2025 | PRNewswireElkem ASA, a global leader in advanced silicon-based materials, unveiled SILBIONE LSR Select EC 70, a next-generation medical-grade liquid silicone rubber. Designed for wearable and diagnostic devices, the material combines high electrical conductivity, certified biocompatibility1, and enhanced process control, setting a new standard for precision healthcare applications.
OE-A Business Climate Survey: Solid Growth for the Flexible and Printed Electronics Industry
10/21/2025 | OE-AFor 2026 the industry has more positive expectations, with a sales forecast of +14 percent, which has even increased slightly compared to the beginning of the year. Further encouraging signs include improved employment prospects. 30 percent of companies plan to increase their workforce in the coming months — up from 10 percent in February.
FCT Leverages Flex Design and Total Build Solutions to Drive Innovation
10/22/2025 | Marcy LaRont, PCB007 MagazineWhat’s hot in flexible circuits right now? At PCB West, I spoke with Ben Savage, business development manager at Flexible Circuit Technologies (FCT), about their flex design services and end-markets where FCT sees the most flex activity. We also discussed the company’s focus on providing supply chain resiliency, as well as the constant search for new flex engineers. If you’re looking for a new opportunity in flexible circuits, FCT is hiring.
Elephantech's SustainaCircuits FPC Adopted for Mass Production in OM Digital Solutions’ Interchangeable Lens
10/06/2025 | ElephantechElephantech Inc. is pleased to announce that its proprietary flexible printed circuits (FPCs) have been adopted for mass production by OM Digital Solutions Corporation in the company’s latest flagship products.