Generation and Sampling of Quantum States of Light in a Silicon Chip
July 2, 2019 | University of BristolEstimated reading time: 4 minutes

Scientists from the University of Bristol and the Technical University of Denmark have found a promising new way to build the next generation of quantum simulators combining light and silicon micro-chips.
Image Caption: By exploring complex integrated circuits, photonic states can be generated and processed at larger scales. Dr Stefano Paesani, University of Bristol
In the roadmap to develop quantum machines able to compete and overcome classical supercomputers in solving specific problems, the scientific community is facing two main technological challenges.
The first is the capability of building large quantum circuits able to process the information on a massive scale, and the second is the ability to create a large number of single quantum particles that can encode and propagate the quantum information through such circuits.
Both these two requirements need to be satisfied in order to develop an advanced quantum technology able to overcome classical machines.
A very promising platform to tackle such challenges is silicon quantum photonics. In this technology, the information carried by photons, single particle of lights, is generated and processed in silicon micro-chips.
These devices guide and manipulate light at the nanoscale using integrated waveguides - the analogue of optical fibres at the nanometre-scale.
Image Caption: Researchers at QETLabs working on silicon quantum photonics experiments. From left to right: Professor Anthony Laing, Dr Stefano Paesani and Dr Raffaele Santagati
Crucially, the fabrication of photonic chips requires the same techniques used for fabricating electronic micro-chips in the semiconductor industry, making the fabrication of quantum circuits at a massive scale possible.
In the University of Bristol’s Quantum Engineering Technology (QET) Labs, the team have recently demonstrated silicon photonic chips embedding quantum interferometres composed of almost a thousand optical components, orders of magnitude higher that what was possible just few years ago.
However, the big question that remained unanswered was if these devices were also able to produce a number of photons large enough to perform useful quantum computational tasks. The Bristol-led research, published today in the journal Nature Physics, demonstrates that this question has a positive answer.
By exploring recent technological developments in silicon quantum photonics, the team have demonstrated that even small-scale silicon photonic circuits can generate and process a number of photons unprecedented in integrated photonics.
In fact, due to imperfections in the circuit such as photon losses, previous demonstrations in integrated photonics have been mostly limited to experiments with only two photons generated and processed on-chip, and only last year, four-photon experiments were reported using complex circuitry.
Page 1 of 2
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/06/2025 | Nolan Johnson, I-Connect007Maybe you’ve noticed that I’ve been taking to social media lately to about my five must-reads of the week. It’s just another way we’re sharing our curated content with you. I pay special attention to what’s happening in our industry, and I can help you know what’s most important to read about each week. Follow me (and I-Connect007) on LinkedIn to see these and other updates.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
Siemens Leverages AI to Close Industry’s IC Verification Productivity Gap in New Questa One Smart Verification Solution
05/13/2025 | SiemensSiemens Digital Industries Software announced the Questa™ One smart verification software portfolio, combining connectivity, a data driven approach and scalability with AI to push the boundaries of the Integrated Circuit (IC) verification process and make engineering teams more productive.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.