Direct After-Fabrication Tailoring of MoS2-FET Transistors
July 8, 2019 | IMDEA NanocienciaEstimated reading time: 2 minutes

The fabrication of electronic devices from exfoliated 2D materials can be tricky. The group of Daniel Granados at IMDEA Nanociencia have engineered a solution that consist on the after-fabrication tailoring of MoS2-FET transistors using pulsed-focused electron beam induced etching.
Transition metal dichalcogenides are discrete 2D atomically thin layers bound together by Van der Waals forces. These materials exhibit thickness-dependent variations in their physical properties that can be exploited in distinct optoelectronic applications. For example, the band structure of molybdenum disulphide (MoS2) has a direct bandgap of 1.8 eV in a single layer that narrows down with thickness, being 1.2 eV indirect bandgap in bulk.
The atomically thin layers of MoS2 can be separated by micromechanical exfoliation, nonetheless the fabrication of optoelectronic devices from mechanically exfoliated MoS2 is an intricate process. The geometry of the device is limited in all cases by the shape of the exfoliated flake, even when a deterministic stamping method is employed. Even when using CVD (chemical vapour deposition) techniques the device fabrication is hindered by the material growing in islands with reduced sizes and different physical properties.
Thus, developing techniques to tailor the device geometry after the fabrication steps are completed is of great interest. The group of Prof. Daniel Granados at IMDEA Nanociencia has come to a smart solution to modify the geometry of several field effect transistors (FET) fabricated out of exfoliated MoS2. The proposed method uses a variation of the Focused Electron Beam Induced Etching (FEBIE) with a pulsed electron beam. The beam scans the surface into a designed geometry employing a pattern generator, modifying of the conduction channel between the source and the drain of the transistor and allowing a tailor-made device performance.
Prof. Granados likes to use the hydrodynamic analogy: “It is like turbulent flow, after passing certain apertures it becomes laminar; our tailored conduction channels allow the electrons passing by areas of the MoS2 flakes with identical properties”.
The effect of this modification method has been studied further to verify the performance of the modified devices. Granados’ group has found that 90% of the devices work after the nanopatterning. Further, they studied the shift that is produced from clear heavily N-type doping towards intrinsic or lightly P-type, and attributed this change to sulphur vacancies created when etching. The doping shift was confirmed by photoluminescence and Raman spectroscopy studies.
This method presents several advantages compared to those that use several fabrication steps. First, it combines patterning and etching into a single step instead of having a two-step nanofabrication process. Second, it allows electronic and optical characterization before and after the tailoring step in a simple scheme. Last, the pulsed-FEBIE is a chemical method that has an electron beam energy lower than other studies (2.5 kV) that reduces the sample damage and prevents the distortion of the MoS2 lattice. Because of these advantages, the “nanoscissors” proposed by Granados et al. are a remarkable alternative to the expensive and time-consuming nanofabrication techniques and have a great potential for the after-fabrication tailoring of the electrical and geometrical properties of electronic and optoelectronic devices.
This research is a collaboration between researchers at IMDEA Nanociencia (Spain), University of Hamburg (Germany), University of Lancaster (United Kingdom) and Autónoma University of Madrid (Spain), and has been partially funded by Comunidad de Madrid, Spanish Ministry of Economy and Competitiveness and the European Commission (Graphene Core), as well as the Severo Ochoa Programme for Centres of Excellence awarded to IMDEA Nanociencia (2017-2021).
Suggested Items
In Pursuit of Perfection: Defect Reduction—May 2025 PCB007 Magazine Now Available
05/15/2025 | I-Connect007 Editorial TeamFor bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In the May 2025 issue of PCB007 Magazine, we examine the imaging, etching, and plating processes, as well as product traceability on the shop floor, providing information and insight into how you can reduce your defects and increase yields.
DuPont to Showcase Advanced Semiconductor Wet Etching Innovations at the Surface Preparation and Cleaning Conference
05/13/2025 | DuPontDuPont announced that it will present its latest developments in semiconductor wet etching technologies at the upcoming Surface Preparation and Cleaning Conference (SPCC) in Chandler, Arizona, beginning May 20.
The Chemical Connection: Common Misconceptions in Wet Processing
04/28/2025 | Don Ball -- Column: The Chemical ConnectionInitially, I thought an April Fool’s column would be fun this month. I could highlight some of the crazier ideas and misconceptions I’ve witnessed over the years from potential customers and we could all have a good laugh. For example, there was a first-time buyer of a ferric chloride etcher (with no regeneration system) who was astonished to learn that he had to put fresh etchant in the system occasionally to maintain production.
Lam Research Donates Leading-Edge Etch System to Accelerate Nanofabrication R&D at UC Berkeley
04/17/2025 | PRNewswireLam Research Corp. announced the donation of its innovative multi-chamber semiconductor etching system to the Marvell Nanofabrication Laboratory at the University of California, Berkeley to advance research and development (R&D) for next-generation chip technologies.
Chemcut Corporation Announces Atlantic Micro Tool Expanded Sales Territory
03/11/2025 | Chemcut CorporationChemcut Corporation, the US based manufacturer of Wet Process Equipment, has expanded Atlantic Micro Tools sales territory to include DE, MD, VA, WV, NY, PA, NC, SC, TN, GA, AL, FL, MS, Ontario. Atlantic Micro Tool has represented Chemcut for over 15 years in the States of ME, NH, VT, RI, CT, NJ, New York City MA, NY counties of Nassau, Suffolk, Quebec & Eastern Ontario.