-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueProduction Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
ICT or Flying Probe: Which Test Is Best for Your Assembly?
July 10, 2019 | Russell Poppe, JJS ManufacturingEstimated reading time: 3 minutes

In-circuit test (ICT) and flying probe are two of the most popular types of automated test equipment (ATE) used in electronic printed circuit board assembly (PCBA). But what sets them apart? And how can you decide on the test strategy that is going to work best for your assemblies? In this article, I highlight the benefits (and the shortcomings) of both ICT and flying probe with a specific focus on three areas: product design, coverage, and cost.
1. Product Design
A good quality test program (also known as good coverage) will rely on the quality of your computer-aided design (CAD) data and schematics. The CAD data is used to generate the basic test programme, which ensures that information is sourced from the original design rather than any manual interpretation of other data. Good quality populated, and unpopulated, sample PCBAs are also vital for fine-tuning the test programmes, debugging, and making any fixtures so that the assemblies physically fit as they were intended.
Thinking about product design for a moment, what are the differences between each test solution which you may want to keep in mind? Flying probe machines, like those offered by Takaya, can probe the ends of component pads and uncovered vias to get access to the electrical networks. ICT will require at least a 50thou wide test pad per net, which has been designed into the PCB upfront and is used as a target for the fixed test probe. Double-sided fixtures can be costly, so these should, ideally, be on one side only of the PCB.
2. Coverage
When I talk about coverage, I’m referring to how much of the circuit you are actually able to test. Both ICT and flying probe carry out what is called a manufacturing defects analysis (MDA), which allows for the majority of the most common process faults that are likely to occur. These can include open circuits (due to insufficient or faulty soldering), short circuits, passive component measurements (resistors and capacitors), diode and transistor orientation, and basic supply voltage measurements.
However, given that these elements are common to both types of the testing platform, what sets them apart?
- Most flying probe systems will offer some form of limited optical inspection, which adds coverage for those components that can’t be accessed electrically; ICT fixtures usually won’t offer the option of optical inspection
- In addition to vectorless test, integrated circuits (ICs) can also include some powered (albeit basic) functional testing to check the soldering of pins to the PCB through a non-contact capacitive probe or plate; in most cases, flying probe is limited to only vectorless test
- ICT can also provide limited analogue and digital measurements, which flying probe isn't capable of due to the limited number of probes
3. Cost
The programming cost will depend on the complexity of the assembly but is broadly the same for either test solution (potentially around $2,500 or so). When it comes to other charges associated with test, however, there are some key differences to bear in mind:
- The fixture costs of flying probe are usually zero; in contrast, an ICT fixture can run to nearly $5,000
- The development lead time for flying probe is typically less than a week; ICT can take up to six weeks for fixture manufacture and programming
- In the event that your product design changes in any way, it will only require a programme change; in the case of ICT, it could well require a new fixture as well if any components or test pads have moved
- The actual machine test time of ICT is usually less than a minute, which means it is ideal for working quickly through larger batches; flying probe, on the other hand, can take several minutes, which means it's often more suited to smaller batches
- The speed of ICT also means that it is relatively inexpensive, often coming in at less than $1.24 per unit; flying probe is a much slower process and can cost $62 or more per assembly)
If you're still unsure about which test option is best for your product, you may find this simple visual checklist useful in comparing the pros and cons:
When it comes to test, each product will have its own unique requirements. But by keeping in mind the primary benefits (and points of difference) of the two platforms, you should feel much better placed to select the best test strategy for your PCBA assembly.
Russell Poppe is the director of technology at JJS Manufacturing.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Cadence Giving Foundation Announces Multi-Year Commitment to Expand the AI Hub at San José State University
10/13/2025 | Cadence Design Systems, Inc.The Cadence Giving Foundation today announced a multi-year commitment to expand the AI Hub at San José State University (SJSU) to equip students with the skills, hands-on training and experience needed to excel in careers in artificial intelligence (AI).
NEDME Returns October 22 — The Northwest’s Premier Design & Manufacturing Expo
10/13/2025 | NEDMEThe Northwest Electronics Design & Manufacturing Expo (NEDME) returns on Wednesday, October 22, 2025, at Wingspan Event & Conference Center, Hillsboro. The event brings together engineers, product designers, manufacturers, educators, and community partners for a full day of industry connection, learning, and networking.
Sumitomo Riko Boosts Automotive Design Efficiency 10x with Ansys AI Simulation Technology
10/13/2025 | SynopsysSumitomo Riko is implementing Ansys, part of Synopsys, Inc. AI technology to accelerate time-to-solution and improve efficiency during the design and manufacturing of automotive components.
Si2 Names NVIDIA, Synopsys Technologists to Lead New LLM Benchmarking Coalition
10/10/2025 | BUSINESS WIREThe Silicon Integration Initiative today announced the chair and vice chair of the Si2 Large Language Model Benchmarking Coalition (LBC), a collaborative industry initiative and standards body advancing AI for silicon design and verification that will expedite the development of high-quality large language models for semiconductor design problems.
Quilter Secures $25M Series B to Eliminate Manual PCB Design with Physics-Driven AI
10/09/2025 | BUSINESS WIREQuilter, the first and only company to publicly demonstrate fully autonomous PCB layout through physics-driven AI, announced $25 million in Series B funding led by Index Ventures.