Rice Device Channels Heat Into Light
July 17, 2019 | Rice UniversityEstimated reading time: 3 minutes

The ever-more-humble carbon nanotube may be just the device to make solar panels – and anything else that loses energy through heat – far more efficient.
Rice University scientists are designing arrays of aligned single-wall carbon nanotubes to channel mid-infrared radiation (aka heat) and greatly raise the efficiency of solar energy systems.
Gururaj Naik and Junichiro Kono of Rice’s Brown School of Engineering introduced their technology in ACS Photonics.
Their invention is a hyperbolic thermal emitter that can absorb intense heat that would otherwise be spewed into the atmosphere, squeeze it into a narrow bandwidth and emit it as light that can be turned into electricity.
The discovery rests on another by Kono’s group in 2016 when it found a simple method to make highly aligned, wafer-scale films of closely packed nanotubes.
Discussions with Naik, who joined Rice in 2016, led the pair to see if the films could be used to direct “thermal photons.”
“Thermal photons are just photons emitted from a hot body,” Kono said. “If you look at something hot with an infrared camera, you see it glow. The camera is capturing these thermally excited photons.”
Infrared radiation is a component of sunlight that delivers heat to the planet, but it’s only a small part of the electromagnetic spectrum. “Any hot surface emits light as thermal radiation,” Naik said. “The problem is that thermal radiation is broadband, while the conversion of light to electricity is efficient only if the emission is in a narrow band.
“The challenge was to squeeze broadband photons into a narrow band,” he said.
The nanotube films presented an opportunity to isolate mid-infrared photons that would otherwise be wasted. “That’s the motivation,” Naik said. “A study by (co-lead author and Rice graduate student) Chloe Doiron found that about 20% of our industrial energy consumption is waste heat. That’s about three years of electricity just for the state of Texas. That’s a lot of energy being wasted.
“The most efficient way to turn heat into electricity now is to use turbines, and steam or some other liquid to drive them,” he said. “They can give you nearly 50% conversion efficiency. Nothing else gets us close to that, but those systems are not easy to implement.” Naik and his colleagues aim to simplify the task with a compact system that has no moving parts.
The aligned nanotube films are conduits that absorb waste heat and turn it into narrow-bandwidth photons. Because electrons in nanotubes can only travel in one direction, the aligned films are metallic in that direction while insulating in the perpendicular direction, an effect Naik called hyperbolic dispersion. Thermal photons can strike the film from any direction, but can only leave via one.
“Instead of going from heat directly to electricity, we go from heat to light to electricity,” Naik said. “It seems like two stages would be more efficient than three, but here, that’s not the case.”
Naik said adding the emitters to standard solar cells could boost their efficiency from the current peak of about 22%. “By squeezing all the wasted thermal energy into a small spectral region, we can turn it into electricity very efficiently,” he said. “The theoretical prediction is that we can get 80% efficiency.”
Page 1 of 2
Suggested Items
Laird Thermal Systems Unveils New Identity
05/05/2025 | Laird Thermal SystemsLaird Thermal Systems, a global leader in active thermal management solutions with more than 60 years of application expertise, today announced its rebrand to Tark Thermal Solutions.
Ansys Strengthens Collaboration with TSMC on Advanced Node Processes Certification and 3D-IC Multiphysics Design Solutions
04/24/2025 | PRNewswireThrough continued collaboration with TSMC, Ansys announced enhanced AI-assisted workflows for radio frequency (RF) design migration and photonic integrated circuits (PICs), and new certifications for its semiconductor solutions. Together,
Explore Thermal Management Solutions in Latest Podcast Series—New Episode Now Available
04/30/2025 | I-Connect007I-Connect007 is excited to share the latest episode in our new podcast series! In this episode, Ryan returns to discuss practical strategies for managing heat, starting early in the design planning and specification phases. After all, prevention means there’s less to mitigate later.
Google Signs Taiwan’s First Corporate Geothermal Energy Deal in Asia-Pacific
04/23/2025 | I-Connect007 Editorial TeamGoogle announced that it has entered Taiwan’s first corporate geothermal power purchase agreement (PPA) with Baseload Capital to expand access to around-the-clock clean energy in the Asia-Pacific region and beyond.
Laird Thermal Systems Announces Max Kley as New CEO
04/18/2025 | Laird Thermal SystemsLaird Thermal Systems (LTS) is pleased to announce the appointment of Dr. Max Kley as its new Chief Executive Officer, effective April 1, 2025. Max Kley brings a wealth of international leadership experience to LTS, having successfully led and developed businesses across the USA, Europe, and Asia.