First Programmable Memristor Computer Aims to Bring AI Processing Down from the Cloud
July 18, 2019 | Michigan State UniversityEstimated reading time: 4 minutes
The memristor array chip plugs into the custom computer chip, forming the first programmable memristor computer. The team demonstrated that it could run three standard types of machine learning algorithms. Image credit: Robert Coelius, Michigan Engineering.
ANN ARBOR—The first programmable memristor computer—not just a memristor array operated through an external computer—has been developed at the University of Michigan.
It could lead to the processing of artificial intelligence directly on small, energy-constrained devices such as smartphones and sensors. A smartphone AI processor would mean that voice commands would no longer have to be sent to the cloud for interpretation, speeding up response time.
“Everyone wants to put an AI processor on smartphones, but you don’t want your cell phone battery to drain very quickly,” said Wei Lu, U-M professor of electrical and computer engineering and senior author of the study in Nature Electronics.
In medical devices, the ability to run AI algorithms without the cloud would enable better security and privacy.
Why Memristors are Good for Machine Learning
The key to making this possible could be an advanced computer component called the memristor. This circuit element, an electrical resistor with a memory, has a variable resistance that can serve as a form of information storage. Because memristors store and process information in the same location, they can get around the biggest bottleneck for computing speed and power: the connection between memory and processor.
This is especially important for machine-learning algorithms that deal with lots of data to do things like identify objects in photos and videos—or predict which hospital patients are at higher risk of infection. Already, programmers prefer to run these algorithms on graphical processing units rather than a computer’s main processor, the central processing unit.
“GPUs and very customized and optimized digital circuits are considered to be about 10-100 times better than CPUs in terms of power and throughput.” Lu said. “Memristor AI processors could be another 10-100 times better.”
GPUs perform better at machine learning tasks because they have thousands of small cores for running calculations all at once, as opposed to the string of calculations waiting their turn on one of the few powerful cores in a CPU.
A memristor array takes this even further. Each memristor is able to do its own calculation, allowing thousands of operations within a core to be performed at once. In this experimental-scale computer, there were more than 5,800 memristors. A commercial design could include millions of them.
Memristor arrays are especially suited to machine learning problems. The reason for this is the way that machine learning algorithms turn data into vectors—essentially, lists of data points. In predicting a patient’s risk of infection in a hospital, for instance, this vector might list numerical representations of a patient’s risk factors.
Then, machine learning algorithms compare these “input” vectors with “feature” vectors stored in memory. These feature vectors represent certain traits of the data (such as the presence of an underlying disease). If matched, the system knows that the input data has that trait. The vectors are stored in matrices, which are like the spreadsheets of mathematics, and these matrices can be mapped directly onto the memristor arrays.
What’s more, as data is fed through the array, the bulk of the mathematical processing occurs through the natural resistances in the memristors, eliminating the need to move feature vectors in and out of the memory to perform the computations. This makes the arrays highly efficient at complicated matrix calculations. Earlier studies demonstrated the potential of memristor arrays for speeding up machine learning, but they needed external computing elements to function.
Wei Lu stands with first author Seung Hwan Lee, an electrical engineering PhD student, who holds the memristor array. Image credit: Robert Coelius, Michigan Engineering
Page 1 of 2
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
SEMI Reports Global Silicon Wafer Shipments to Rebound 5.4% in 2025, with New Record Expected by 2028
10/30/2025 | SEMIGlobal shipments of silicon wafers are projected to increase 5.4% in 2025 to 12,824 million square inches (MSI) followed by steady growth through 2028 when the market is expected to reach a new industry record of 15,485 MSI, SEMI reported in its annual silicon shipment forecast.
productronica 2025: iTAC Presents AI-supported Knowledge Platform for Connected Production
10/29/2025 | iTAC Software AGIn modern manufacturing facilities, valuable knowledge is stored in systems, documents, and the minds of employees – often fragmented, isolated, and not centrally available.
Unlocking the Promise of AI in Electronics Manufacturing
10/29/2025 | Shobhit Agrawal, Keysight TechnologiesThe electronics manufacturing industry is rapidly evolving as more complicated products are introduced in the production lines, which require technological advancements even in the production processes. The requirements for production that is efficient, product quality that is greater, and product life cycles that are shorter are more crucial than ever before. In the electronic device life cycle, from design to maintenance, test phases have a significant impact on the economy of the company. Test processes are closely linked to the production volume and impacted by the complexity of the product. For businesses to maintain their competitive edge, they need to adopt innovative solutions and redefine processes.
Better Sustainability Policies for Electronics
10/29/2025 | Diana Radovan, Global Electronics AssociationI joined the Global Electronics Association in August 2025 as the director of sustainability policy. Since then, much has happened in terms of geopolitics and in the development and re-envisioning of sustainability policies in the industry. While the European Commission has released several legislative packages to simplify sustainability requirements (“omnibus”), these developments haven’t yet settled and are not in effect. Given the many recent and ongoing public consultations, with often conflicting input from a broad range of stakeholders, final negotiations remain rather polarized among policymakers.
SEMI Reports Global Silicon Wafer Shipments to Rebound 5.4% in 2025, with New Record Expected by 2028
10/29/2025 | SEMIGlobal shipments of silicon wafers are projected to increase 5.4% in 2025 to 12,824 million square inches (MSI) followed by steady growth through 2028 when the market is expected to reach a new industry record of 15,485 MSI, SEMI reported today in its annual silicon shipment forecast.