First Programmable Memristor Computer Aims to Bring AI Processing Down from the Cloud
July 18, 2019 | Michigan State UniversityEstimated reading time: 4 minutes
To build the first programmable memristor computer, Lu’s team worked with associate professor Zhengya Zhang and professor Michael Flynn, both of electrical and computer engineering at U-M, to design a chip that could integrate the memristor array with all the other elements needed to program and run it. Those components included a conventional digital processor and communication channels, as well as digital/analog converters to serve as interpreters between the analog memristor array and the rest of the computer.
Lu’s team then integrated the memristor array directly on the chip at U-M’s Lurie Nanofabrication Facility. They also developed software to map machine learning algorithms onto the matrix-like structure of the memristor array.
The team demonstrated the device with three bread-and-butter machine learning algorithms:
- Perceptron, which is used to classify information. They were able to identify imperfect Greek letters with 100% accuracy
- Sparse coding, which compresses and categorizes data, particularly images. The computer was able to find the most efficient way to reconstruct images in a set and identified patterns with 100% accuracy
- Two-layer neural network, designed to find patterns in complex data. This two-layer network found commonalities and differentiating factors in breast cancer screening data and then classified each case as malignant or benign with 94.6% accuracy.
There are challenges in scaling up for commercial use—memristors can’t yet be made as identical as they need to be and the information stored in the array isn’t entirely reliable because it runs on analog’s continuum rather than the digital either/or. These are future directions of Lu’s group.
Lu plans to commercialize this technology. The study is titled, “A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations.” The research is funded by the Defense Advanced Research Projects Agency, the center for Applications Driving Architectures (ADA), and the National Science Foundation.
Page 2 of 2Suggested Items
Keysight, Instrumentix Partner to Launch Complete Trade Monitoring Solution for Financial Markets
11/21/2024 | Keysight TechnologiesKeysight Technologies, Inc. expanded its financial capital markets portfolio through a partnership with Instrumentix to introduce a cutting-edge trade solution.
Gartner Forecasts MENA IT Spending to Grow 7.4% in 2025
11/20/2024 | Gartner, Inc.IT spending in the Middle East and North Africa (MENA) region is projected to total $230.7 billion in 2025, an increase of 7.4% from 2024, according to the latest forecast by Gartner, Inc.
ASMPT: Highly Flexible Die and Flip-chip Bonder for Co-packaged Optics Production
11/20/2024 | ASMPTThe high-precision AMICRA NANO die and flip-chip bonder has been specially developed for the production of co-packaged optics where which optical and electronic components are integrated in a common housing. With its exceptional process stability and a placement accuracy of ±0.2 μm @ 3 σ, this innovative bonding system is ideally equipped for the communication technology of the future.
New Ultrafast Memory Boosts Intel Data Center Chips
11/19/2024 | IntelWhile Intel’s primary product focus is on the processors, or brains, that make computers work, system memory (that’s DRAM) is a critical component for performance. This is especially true in servers, where the multiplication of processing cores has outpaced the rise in memory bandwidth (in other words, the memory bandwidth available per core has fallen).
Sluggish Telecom Market Growth Prompts Operators to Become Full-Stack Technology Suppliers
11/18/2024 | IDCWorldwide spending on telecommunications and pay TV services will reach $1,544 billion in 2024, representing an increase of 2.4% year-on-year, according to the Worldwide Semiannual Telecom Services Tracker published by International Data Corporation (IDC).