Single Molecules Can Take the Heat
July 22, 2019 | Rice UniversityEstimated reading time: 3 minutes

How much heat can a molecule handle? That’s been a tough question to answer until now, but Longji Cui is on the case.
Image Caption: A Rice University postdoctoral student led a Michigan study to measure how single molecules conduct heat through a custom probe microscope probe that pulled molecules from a gold surface. Click on the image for a larger version. (Credit: Courtesy of Longji Cui)
Cui, who joined Rice’s Smalley-Curl Institute last year as the J. Evans Attwell-Welch Postdoctoral Fellow, is lead author of the paper that details not only the measurements but the ingenious method he developed to get them.
“We basically demonstrated a single-molecule heat conductor, the smallest heat conductor you can imagine,” Cui said. “We combined a scanning tunneling microscope that can manipulate single molecules and atoms and a ultrahigh resolution sensing technique called picowatt (a trillionth of one watt of power) calorimetry.” That allowed them to measure heat-carrying phonons as they moved through one-dimensional chains of atoms in a single molecule at a resolution of about 80 picowatt.
The central feature of the technique was a nanoscale probe with a gold-coated tip that looked something like a tuning fork with a very short handle. Within the fork was the sensitive calorimeter that measured the energy flow through the molecule stretched between a heated tip and a gold substrate.
“It took a lot of effort to make the experiment possible,” said Cui, for whom the project served as his doctoral thesis. “The measurement of single molecule junctions needs both extreme mechanical stability and extreme temperature sensitivity – and generally, those two are not complementary.”
For the experiments, a self-assembled monolayer of target molecules was first deposited on a gold substrate. They used the scanning tip to grab one end of a molecule and a piezoelectric mechanism of the scanning tunneling microscope to stretch it — like pulling taffy very, very slowly — at 5 hundredths of a nanometer a second, until the connection broke. “When we stretched the molecule, we monitored the change in the electrical conductance of the molecules, to identify that it’s really a single molecule trapped between the tip and the substrate.”
They discovered that heat-carrying phonons were minimally affected by the length of the molecules — in this case, thiol-terminated alkanes with between 2 and 10 carbon atoms — as they were stretched between the substrate and the gold tip. That was in direct contrast to electrical conductance, which fell exponentially with molecular length.
“Now we understand how phonons behave at a fundamental molecular limit,” Cui said. “Going forward, I imagine we can look for other one-dimensional molecular systems such as long polymers. Theorists have predicted that phonons could transport energy much easier along such long chains of molecules. Plus, the capability of capturing and controlling very small temperature change is important in many areas, like high accuracy time-keeping applications, laser cavity output and thermal cameras.”
Image Caption: Microscope images show the tiny probe used to measure thermal conductance through a single molecule. (Credit: Courtesy of Longji Cui)
Cui came to Houston to work with physicist Douglas Natelson, whom he met at a Rice workshop a few years ago and whose own work in single-molecule measurements helped inspire the new study.
Cui’s time at Rice will be short, as he will become an assistant professor of mechanical engineering and materials science and engineering at the University of Colorado, Boulder, in January. But for now, he relishes the chance to work with Natelson.
“Doug is the perfect mentor to help me go forward and look at the research direction I want to take,” Cui said. “He’s a pioneer in Raman spectroscopy of single molecules and nanostructures, and I’m looking to measure how another fundamental particle, photons, and the interaction between photons with electrons and phonons, behave in small molecular devices.”
Suggested Items
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.
Explore Thermal Management Solutions in Latest Podcast Series—New Episode Now Available
04/30/2025 | I-Connect007I-Connect007 is excited to share the latest episode in our new podcast series! In this episode, Ryan returns to discuss practical strategies for managing heat, starting early in the design planning and specification phases. After all, prevention means there’s less to mitigate later.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Saki’s AXI Upgrade Enhances Image Noise Reduction for Power Modules, Enabling Sharper, More Accurate Inspections
04/11/2025 | Saki CorporationSaki Corporation, an innovator in the field of automated optical and X-ray inspection equipment, announces significant enhancements to the image processing capabilities of its 3Xi-M200 X-ray Automated Inspection (AXI) system.
New Guide Offers In-Depth Look at Thermal Management in PCB Design
04/14/2025 | I-Connect007I-Connect007 is proud to release The Companion Guide to PCB Thermal Management, a must-have resource designed to complement NCAB’s popular podcast series. Created for engineers and PCB designers, this guide offers a comprehensive look at critical thermal management strategies essential for today's high-performance electronics.