Drones Will Fly for Days With New Photovoltaic Engine
July 29, 2019 | UC BerkeleyEstimated reading time: 2 minutes

UC Berkeley researchers just broke another record in photovoltaic efficiency, an achievement that could lead to an ultralight engine that can power drones for days.
For the past 15 years, the efficiency of converting heat into electricity with thermovoltaics has been stalled at 23 percent. But a groundbreaking physical insight has allowed researchers to raise this efficiency to 29 percent. Using a novel design, the researchers are now aiming to reach 50 percent efficiency in the near future by applying well-established scientific concepts.
This breakthrough has big implications for technologies that currently rely on heavy batteries for power. Thermophotovoltaics are an ultralight alternative power source that could allow drones and other unmanned aerial vehicles to operate continuously for days. It could also be used to power deep space probes for centuries and eventually an entire house with a generator the size of an envelope.
“Thermophotovoltaics are compact and extremely efficient for a wide range of applications, from those that require as little as 100 watts, [such as] a lightweight unmanned aerial vehicle, to 100 megawatts, [providing] electricity for 36,000 homes. In comparison, a 100-megawatt combined cycle power plant is massive,” said Eli Yablonovitch, professor of electrical engineering and computer science (EECS) and corresponding author on the paper.
According to Yablonovitch, this finding builds on work that he and students published in 2011, which found that the key to boosting solar cell efficiency was not by absorbing more photons (light) but emitting them. By adding a highly reflective mirror on the back of a photovoltaic cell, they broke efficiency records at the time and have continued to do so with subsequent research.
“What the mirror does is create a dense infrared luminescent photon gas within the solar cell, a phenomenon that adds voltage,” said Yablonovitch.
Recently, his team recognized that this mirror could serve double duty. In fact, it solves one of the biggest challenges in thermophotovoltaics: how to exploit the thermal (heat) photons that have too little energy to produce electricity. It turns out that the mirror can reflect those small photons to reheat the thermal source, providing a second chance for a high energy photon to be created and generate electricity. This phenomenon leads to unprecedented efficiency.
“We have achieved this record-breaking result even though we are just using a simple gold mirror. Now, we’ll add a dielectric layer above the gold, and that will improve our efficiency to 36 percent,” said Luis M. Pazos Outόn, a postdoctoral researcher in EECS and one of the lead authors on the paper.
“Just by increasing the reflectivity, we will get 36 percent efficiency. But by making other tweaks to the cell, using proven techniques in the scientific literature, we know we can get to 50 percent efficiency,” said Zunaid Omair, a graduate student researcher in EECS and first author on the paper. “Before our result, thermophotovoltaic efficiency had stalled at 23 percent for a long time, so to get from 23 to 29 percent is a really big deal.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.