Brain Inspires a New Type of Artificial Intelligence
August 9, 2019 | BAR-ILAN UNIVERSITYEstimated reading time: 2 minutes

Machine learning, introduced 70 years ago, is based on evidence of the dynamics of learning in our brain. Using the speed of modern computers and large data sets, deep learning algorithms have recently produced results comparable to those of human experts in various applicable fields, but with different characteristics that are distant from current knowledge of learning in neuroscience.
Image Caption: Processing an event with multiple objects. A synchronous input where all objects are presented simultaneously to a computer (left), versus an asynchronous input where objects are presented with temporal order to the brain (right).
Using advanced experiments on neuronal cultures and large scale simulations, a group of scientists at Bar-Ilan University in Israel has demonstrated a new type of ultrafast artifical intelligence algorithms—based on the very slow brain dynamics—which outperform learning rates achieved to date by state-of-the-art learning algorithms.
In an article published today in the journal Scientific Reports, the researchers rebuild the bridge between neuroscience and advanced artificial intelligence algorithms that has been left virtually useless for almost 70 years.
"The current scientific and technological viewpoint is that neurobiology and machine learning are two distinct disciplines that advanced independently," said the study's lead author, Prof. Ido Kanter, of Bar-Ilan University's Department of Physics and Gonda (Goldschmied) Multidisciplinary Brain Research Center. "The absence of expectedly reciprocal influence is puzzling."
"The number of neurons in a brain is less than the number of bits in a typical disc size of modern personal computers, and the computational speed of the brain is like the second hand on a clock, even slower than the first computer invented over 70 years ago," he continued. "In addition, the brain's learning rules are very complicated and remote from the principles of learning steps in current artificial intelligence algorithms," added Prof. Kanter, whose research team includes Herut Uzan, Shira Sardi, Amir Goldental and Roni Vardi.
Brain dynamics do not comply with a well-defined clock synchronized for all nerve cells, since the biological scheme has to cope with asynchronous inputs, as physical reality develops. "When looking ahead one immediately observes a frame with multiple objects. For instance, while driving one observes cars, pedestrian crossings, and road signs, and can easily identify their temporal ordering and relative positions," said Prof. Kanter. "Biological hardware (learning rules) is designed to deal with asynchronous inputs and refine their relative information." In contrast, traditional artifical intelligence algorithms are based on synchronous inputs, hence the relative timing of different inputs constituting the same frame is typically ignored.
The new study demonstrates that ultrafast learning rates are surprisingly identical for small and large networks. Hence, say the researchers, "the disadvantage of the complicated brain's learning scheme is actually an advantage". Another important finding is that learning can occur without learning steps through self-adaptation according to asynchronous inputs. This type of learning-without-learning occurs in the dendrites, several terminals of each neuron, as was recently experimentally observed. In addition, network dynamics under dendritic learning are governed by weak weights which were previously deemed insignificant.
The idea of efficient deep learning algorithms based on the very slow brain's dynamics offers an opportunity to implement a new class of advanced artificial intelligence based on fast computers. It calls for the reinitiation of the bridge from neurobiology to artifical intelligence and, as the research group concludes, "Insights of fundamental principles of our brain have to be once again at the center of future artificial intelligence."
Suggested Items
Koh Young Installs 24,000th Inspection System at Fabrinet Chonburi
04/23/2025 | Koh YoungKoh Young, the global leader in True 3D measurement-based inspection and metrology solutions, proudly announces the installation of its 24,000th inspection system at Fabrinet Chonburi in Thailand. This advanced facility is operated by Fabrinet Co., Ltd., a global provider of advanced manufacturing services, specializing in complex optical, electro-optical, and electronic products
Alphawave Semi Delivers Foundational AI Platform IP for Scale-Up and Scale-Out Networks
04/23/2025 | BUSINESS WIREAlphawave Semi, a global leader in high-speed connectivity and compute silicon for the world’s technology infrastructure, bolsters its leadership in foundational AI silicon connectivity subsystems through silicon proven chiplets and IP subsystems on advanced process nodes and package types. This is set to be showcased at the TSMC 2025 North America Technology Symposium.
Ceva Neural Processing Unit IP for Edge AI Selected by Nextchip for Next-Generation ADAS Solutions
04/23/2025 | PRNewswireCeva, Inc., the leading licensor of silicon and software IP that enables Smart Edge devices to connect, sense and infer data more reliably and efficiently, announced that Nextchip has licensed the NeuPro-M Edge AI Neural Processing Unit (NPU) IP for its next-generation advanced driver assistance systems (ADAS) solutions.
ViTrox Marks 25 Years of Innovation with Cutting-Edge Solutions at NEPCON China 2025 in Shanghai
04/18/2025 | ViTrox TechnologiesViTrox, which aims to be the World’s Most Trusted Technology Company, is proud to announce its participation in NEPCON China 2025, taking place from April 22–24, 2025, at Booth #1E45, Shanghai World Expo Exhibition & Convention Centre (SWEECC).
AdvancedPCB Appoints Gary Stoffer as Chief Commercial Officer
04/18/2025 | PRNewswireAdvancedPCB is proud to announce the appointment of Gary Stoffer as its new Chief Commercial Officer (CCO). In this role, Stoffer will lead all sales, marketing, and commercial strategy initiatives as the company continues its mission to deliver cutting-edge PCB solutions to industries worldwide.