-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Innovative Electroplating Processes for IC Substrates
August 27, 2019 | S. Dharmarathna, S. Maddux, C. Benjamin, I. Li, W. Bowerman, K. Feng, and J. Watkowski, MacDermid Alpha Electronics SolutionsEstimated reading time: 3 minutes

Abstract
In this era of electronics miniaturization, high-yield and low-cost integrated circuit (IC) substrates play a crucial role by providing a reliable method of high-density interconnection (HDI) of the chip to the board. To maximize substrate real estate, the distance between copper traces—also known as line and space (L/S)- should be minimized. Typical PCB technology consists of L/S larger than 40 µm whereas more advanced wafer-level technology currently sits at or around 2 µm L/S. In the past decade, the chip size has decreased significantly along with the L/S on the substrate. The decreasing chip scales and smaller L/S distances have created unique challenges for both the printed circuit board (PCB) industry and the semiconductor industry.
Fan-out panel-level packaging (FOPLP) is a new manufacturing technology that seeks to bring the PCB world and IC/semiconductor world even closer. While FOPLP is still an emerging technology, the amount of high-volume production in this market space provide a financial incentive to develop innovative solutions to enable its ramp-up. The most important performance aspect of the fine-line plating in this market space is plating uniformity or planarity. Plating uniformity, trace/via top planarity (which measures how flat the top of the traces), and vias are a few major features. This is especially important in multilayer processing, as nonuniformity on a lower layer can be transferred to successive layers, disrupting the device design with catastrophic consequences, such as short circuits. Additionally, a non-planar surface could also result in signal transmission loss by distortion of the connecting points (i.e., vias and traces). Therefore, plating solutions that provide a uniform, planar profile without any special post-treatment are quite desirable.
Here, we discuss innovative additive packages for direct-current copper electroplating specifically for IC substrates with capabilities such as embedded trench fill and simultaneous through-hole plating and via filling with an enhanced pattern plate. These new solutions not only offer better trace profile, but they also deliver via fill and through-hole plating. We also describe two electrolytic copper plating processes, the selection of which could be based on the via size and the dimple requirements of the application. Process I offers great via fill for deeper vias up to 80–120 µm diameter and 50–100µm deep. Process II is more suitable for shallow smaller vias 50–75 µm diameter and 30–50 µm deep.
In this article, we show that these two processes provide excellent surface uniformity and trace profile while also providing via filling and through-hole plating capabilities when controlled within given parameters. Process optimization and thermal and physical characterization of the metallization are also presented.
Introduction
The IC substrate is the highest level of miniaturization in PCB technology, providing the connection between the IC chip and the PCB. These connections are created through a network of electrically conductive copper traces and through-holes. The density of the traces is a crucial factor in terms of miniaturization, speed, and portability of consumer electronics. Trace density has grown immensely over the past few decades to meet today’s printed circuit designs, which include thin core material, fine-line widths, and smaller diameter through-holes and blind vias. The development of fan-out panel-level packaging (FOPLP) has been a topic among the microelectronics community for some time.
The main driving forces to push this new technology are cost and productivity. Traditional fan-out wafer-level packaging (FOWLP) uses a 300-mm wafer as the production vehicle because larger wafers are difficult to obtain. Therefore, the FOWLP has a limitation on the basic unit of process, thereby increasing the processing steps, manpower, and cost while also having a low yield. The advantage of using a PCB-like substrate is that manufacturers have more design flexibility and surface area compared to the wafer. As an example, a 610 x 457 mm panel has almost four times the surface area of a 300-mm wafer. Therefore, processing a panel this size drastically reduces cost, time, and processing steps. This is a huge advantage for the high-volume production market.
To read the full article, which appeared in the August 2019 issue of PCB007 Magazine, click here.
Suggested Items
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.