Microfluidic Devices Made of Wood
August 28, 2019 | ACSEstimated reading time: 1 minute

To analyze tiny amounts of liquids, scientists often use devices called microfluidic chips, which are small pieces of plastic that are etched or molded with miniscule channels. Although these single-use chips are small, their widespread use in labs, hospitals and point-of-care situations adds up to a lot of plastic pollution. Therefore, researchers reporting in ACS’ journal Analytical Chemistry have developed versatile microfluidic chips made of a renewable, biodegradable and inexpensive resource—wood.
Microfluidic chips are useful for analyzing small samples, like a single drop of blood, at low cost because only miniscule amounts of expensive reagents are needed. When a fluid flows through the microchannels, it is mixed with certain substances and then analyzed, for example, for the presence of microbes or disease-related proteins. Recently, scientists have tried making microfluidic chips from inexpensive, environmentally friendly resources such as cloth or paper, but these devices are typically limited to relatively simple applications. Govind Rao and colleagues wanted to make a microfluidic device out of low-cost wood that could be used for a variety of purposes.
To make their device, the researchers used a laser printer to engrave tiny channels into birch plywood chips. Then, to prevent liquids from seeping into the porous wood, they coated the channels with a thin layer of Teflon(R). When they introduced blue and red food dyes to the tips of Y- and T-shaped patterns of channels, the liquids mixed as efficiently in the wood chips as in conventional plastic devices. The researchers also used the wood chips, in conjunction with a fluorescence technique, to measure the amounts of two proteins and live bacteria, all of which were similar to the amounts determined by a plastic chip. The wood devices were 10–100 times less expensive than comparable plastic ones and more environmentally friendly. Now, the researchers are working on finding a renewable replacement, such as beeswax or natural oils, for the Teflon coating.
Suggested Items
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.
Transition Automation to Showcase Expanding Line of Permalex Squeegee Products at IPC APEX EXPO
03/07/2025 | Transition AutomationTransition Automation, Inc. (TA) is exhibiting a full product range of Permalex Edge Metal Squeegees and Holder systems at this year’s IPC APEX EXPO
Strategic Materials Conference 2025 to Highlight the New Era of Materials Innovation
02/12/2025 | SEMIWith advanced materials as a critical enabler of semiconductor growth applications, the Strategic Materials Conference (SMC) 2025 will gather top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest advancements in materials innovation.