Automated Conformal Coating of CCAs Using Polyurethane
August 30, 2019 | Marissa Pati and Ana “Lety” Campuzano-Contreras, BAE SystemsEstimated reading time: 3 minutes

Abstract
The development of an automated circuit card assembly (CCA) conformal coating process using a low-outgassing polyurethane material was essential for meeting the increase in customer demand from 3,000 to 60,000 units per year. Low-outgassing polyurethane conformal coating is used for protection against humidity and tin whisker mitigation.
When increasing production throughput requirements, it is necessary to eliminate variation and increase production capacity by automating processes. Manual processes in manufacturing can lead to defects, increased variability, and additional manufacturing time.
To begin the process improvement of automating spraying a low-outgassing polyurethane conformal coating, several machine and material parameters were considered during the evaluation. A selective conformal coating machine was chosen and the following parameters were determined to be critical to the process: thinner-to-material ratio, atomizing air pressure, material syringe pressure, nozzle distance from the substrate, nozzle speed, material flow rate, number of coats, and curing requirements.
These parameters were verified by performing an adhesion by tape test per ASTM D3359-17 (Standard Test Methods for Rating Adhesion by Tape Test) in addition to verifying conformal coat thickness and defects per J-STD-001 (Joint Industry Standard Requirements for Soldered Electrical and Electronic Assemblies) requirements. Implementing a selective polyurethane conformal coating spraying process has increased capacity capabilities and eliminated variations induced from the manual process.
Background
In the manufacturing of Class 3 circuit card assemblies, conformal coating can be critical to the lifespan of the circuit card. For circuit cards to withstand environmental factors in the field they must be properly protected, which typically requires the use of conformal coating. Polyurethane conformal coating is commonly used throughout the industry, but typically, it is used in lower volume production. Tin whisker mitigation is one of the most common reasons to use a low-outgassing polyurethane material.
Adapting to increases in production can be difficult. An increase in customer demand from 3,000 to 60,000 units per year can create many challenges in a manufacturing environment. Currently, a low-outgassing polyurethane material is applied to the circuit card assemblies via manually spraying using an atomizing handheld air gun. With any manual process, there is significant variation in the outcome due to many variables involved; therefore, the process is difficult to control. This variation may be acceptable in low volume production, but for mass production, this method is unsustainable and unreliable. Automating the process is the best way to achieve zero defects, eliminate variation, and accommodate the strict production schedule.
To develop an automated-spraying process for this polyurethane material, there were many factors that had to be taken into consideration and many variables that required process controls (Figure 1). There are J-STD-001 requirements that must be met; polyurethane conformal coating must be 0.03–0.13mm (0.001–0.005 in.) [1]. No defects per IPCA-610 (Acceptability of Electronic Assemblies) are acceptable. There is also the need to meet the customer and drawing requirements. Additionally, strict material requirements, such as pot life and cure time, needed to be considered. All of these factors played a major role in automating the manual hand-spray process, and it was necessary to understand all of the material requirements and restrictions, customer requirements, and IPC requirements before beginning the evaluation of equipment and development of the process.
The entire conformal coating process was evaluated during this experiment, which includes more than just the spraying of polyurethane material onto the circuit cards. The first step of the process is the preparation of circuit card assemblies, which includes cleaning, baking, and masking any areas that are required to be free of conformal coating per the customer drawing requirements. The coating process also includes preparation of the material used for spraying; this may be a mixture of two or more parts that must be weighed and mixed properly. The next step is the spraying and curing of the material onto the circuit cards and coupons for thickness measurements. The final steps of the conformal coating process are the removal of the masking materials and touchup of the coating. Preparation of the substrates, correct mixture of the material, proper curing, and accurate thickness measurements are important variables that could affect the output of the conformal coat spraying process. Therefore, it was necessary to ensure proper controls had been established for all of these aspects of the conformal coating process.
To read the full article, which appeared in the August 2019 issue of SMT007 Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Building Electronics Excellence in India
09/08/2025 | Nolan Johnson, SMT007 MagazineOver two decades, Dave Bergman has helped steer the Global Electronics Association’s work in India, from a single training course to a thriving regional operation with deep government and industry ties. In this interview, Dave explains how the group went from partnering with IPCA to opening its own office in 2010, creating India’s first domestic electronics manufacturing standard, and securing funding for dozens of Indian companies to attend U.S. trade shows.
New Podcast Episode Drop: MKS’ Atotech’s Role in Optimize the Interconnect
09/08/2025 | I-Connect007In this episode of On the Line With…, host Nolan Johnson sits down with Patrick Brooks, MKS' Atotech's Global Product Director, EL Systems, to discuss the critical role that wet processes play alongside laser systems in advancing the Optimize the InterconnectSM initiative. Brooks points to Bondfilm as a key example—a specialized coating that enables CO₂ lasers to ablate more effectively than ever before.
The Global Electronics Association Hosts Successful WorksAsia-AI and Factory of the Future Technical Seminar
09/03/2025 | Global Electronics AssociationOn August 22, 2025, the Global Electronics Association hosted the successful WorksAsia-AI and Factory of the Future Technical Seminar during the exhibition Automation Taipei 2025. The seminar brought together 81 representatives from 58 companies, focusing on the latest applications of AI in smart factories and unveiling four key directions that will drive the electronics industry’s transition toward intelligence and sustainability.
TRI's AI-Powered Inspection Solutions at SMTAI 2025
09/02/2025 | TRITest Research, Inc. (TRI), the leading provider of test and inspection systems, will be joining the SMTA International Exposition & Conference. The event will be held from October 21 – 23, 2025, at the Donald E. Stephens Convention Center in Rosemont, IL, USA.
More Than a Competition: Instilling a Champion's Skill in IPC Masters China 2025
09/01/2025 | Evelyn Cui, Global Electronics Association—East AsiaNearly 500 elite professionals from the electronics industry, representing 18 provinces and municipalities across China, competed in the 2025 IPC Masters Competition China, March 26–28, in Pudong, Shanghai. A total of 114 contestants advanced to the practical competition after passing the IPC Standards Knowledge Competition. Sixty people competed in the Hand Soldering and Rework Competition (HSRC), 30 in the Cable and Wire Harness Assembly Competition (CWAC), and 24 in the Ball Grid Array/Bottom Termination Components (BGA/BTC) Rework Competition.