-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueWhat's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
Moving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Automated Conformal Coating of CCAs Using Polyurethane
August 30, 2019 | Marissa Pati and Ana “Lety” Campuzano-Contreras, BAE SystemsEstimated reading time: 3 minutes

Abstract
The development of an automated circuit card assembly (CCA) conformal coating process using a low-outgassing polyurethane material was essential for meeting the increase in customer demand from 3,000 to 60,000 units per year. Low-outgassing polyurethane conformal coating is used for protection against humidity and tin whisker mitigation.
When increasing production throughput requirements, it is necessary to eliminate variation and increase production capacity by automating processes. Manual processes in manufacturing can lead to defects, increased variability, and additional manufacturing time.
To begin the process improvement of automating spraying a low-outgassing polyurethane conformal coating, several machine and material parameters were considered during the evaluation. A selective conformal coating machine was chosen and the following parameters were determined to be critical to the process: thinner-to-material ratio, atomizing air pressure, material syringe pressure, nozzle distance from the substrate, nozzle speed, material flow rate, number of coats, and curing requirements.
These parameters were verified by performing an adhesion by tape test per ASTM D3359-17 (Standard Test Methods for Rating Adhesion by Tape Test) in addition to verifying conformal coat thickness and defects per J-STD-001 (Joint Industry Standard Requirements for Soldered Electrical and Electronic Assemblies) requirements. Implementing a selective polyurethane conformal coating spraying process has increased capacity capabilities and eliminated variations induced from the manual process.
Background
In the manufacturing of Class 3 circuit card assemblies, conformal coating can be critical to the lifespan of the circuit card. For circuit cards to withstand environmental factors in the field they must be properly protected, which typically requires the use of conformal coating. Polyurethane conformal coating is commonly used throughout the industry, but typically, it is used in lower volume production. Tin whisker mitigation is one of the most common reasons to use a low-outgassing polyurethane material.
Adapting to increases in production can be difficult. An increase in customer demand from 3,000 to 60,000 units per year can create many challenges in a manufacturing environment. Currently, a low-outgassing polyurethane material is applied to the circuit card assemblies via manually spraying using an atomizing handheld air gun. With any manual process, there is significant variation in the outcome due to many variables involved; therefore, the process is difficult to control. This variation may be acceptable in low volume production, but for mass production, this method is unsustainable and unreliable. Automating the process is the best way to achieve zero defects, eliminate variation, and accommodate the strict production schedule.
To develop an automated-spraying process for this polyurethane material, there were many factors that had to be taken into consideration and many variables that required process controls (Figure 1). There are J-STD-001 requirements that must be met; polyurethane conformal coating must be 0.03–0.13mm (0.001–0.005 in.) [1]. No defects per IPCA-610 (Acceptability of Electronic Assemblies) are acceptable. There is also the need to meet the customer and drawing requirements. Additionally, strict material requirements, such as pot life and cure time, needed to be considered. All of these factors played a major role in automating the manual hand-spray process, and it was necessary to understand all of the material requirements and restrictions, customer requirements, and IPC requirements before beginning the evaluation of equipment and development of the process.
The entire conformal coating process was evaluated during this experiment, which includes more than just the spraying of polyurethane material onto the circuit cards. The first step of the process is the preparation of circuit card assemblies, which includes cleaning, baking, and masking any areas that are required to be free of conformal coating per the customer drawing requirements. The coating process also includes preparation of the material used for spraying; this may be a mixture of two or more parts that must be weighed and mixed properly. The next step is the spraying and curing of the material onto the circuit cards and coupons for thickness measurements. The final steps of the conformal coating process are the removal of the masking materials and touchup of the coating. Preparation of the substrates, correct mixture of the material, proper curing, and accurate thickness measurements are important variables that could affect the output of the conformal coat spraying process. Therefore, it was necessary to ensure proper controls had been established for all of these aspects of the conformal coating process.
To read the full article, which appeared in the August 2019 issue of SMT007 Magazine, click here.
Suggested Items
The Global Electronics Association Releases IPC-8911: First-Ever Conductive Yarn Standard for E-Textile Application
07/02/2025 | Global Electronics AssociationThe Global Electronics Association announces the release of IPC-8911, Requirements for Conductive Yarns for E-Textiles Applications. This first-of-its-kind global standard establishes a clear framework for classifying, designating, and qualifying conductive yarns—helping to address longstanding challenges in supply chain communication, product testing, and material selection within the growing e-textiles industry.
IPC-CFX, 2.0: How to Use the QPL Effectively
07/02/2025 | Chris Jorgensen, Global Electronics AssociationIn part one of this series, we discussed the new features in CFX Version 2.0 and their implications for improved inter-machine communication. But what about bringing this new functionality to the shop floor? The IPC-CFX-2591 QPL is a powerful technical resource for manufacturers seeking CFX-enabled equipment. The Qualified Product List (QPL) helps streamline equipment selection by listing models verified for CFX compliance through a robust third-party virtual qualification process.
Advancing Aerospace Excellence: Emerald’s Medford Team Earns Space Addendum Certification
06/30/2025 | Emerald TechnologiesWe’re thrilled to announce a major achievement from our Medford, Oregon facility. Andy Abrigo has officially earned her credentials as a Certified IPC Trainer (CIT) under the IPC J-STD-001 Space Addendum, the leading industry standard for space and military-grade electronics manufacturing.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.
IPC Rebrands as Global Electronics Association: Interview With Dr. John W. Mitchell
06/22/2025 | Marcy LaRont, I-Connect007Today, following a major announcement, IPC is embracing the rapid advancement of technology with a bold decision to change its name to the Global Electronics Association. This name more accurately reflects the full breadth of its work and the modern realities of electronics manufacturing. In this exclusive interview, Global Electronics Association President and CEO Dr. John W. Mitchell shares the story behind the rebrand: Why now, what it means for the industry, and how it aligns with the organization’s mission.