Researchers Uncover New Secrets of Superconductors
September 10, 2019 | CHALMERS UNIVERSITY OF TECHNOLOGYEstimated reading time: 2 minutes
Researchers from Chalmers University of Technology and Politecnico di Milano have identified a crucial new aspect of charge density modulations in cuprate high critical temperature superconductors. They have identified a new electron wave which could help reveal some of the mysteries about superconducting materials.
High critical temperature superconductors have a variable charge density, meaning that their electrical charge is unevenly distributed. This partly results from what are known as ‘charge density waves’, which were discovered a few years ago. But these have only been observed to exist sporadically, under certain conditions. Therefore, they were not believed to be a contributing factor to the materials’ superconducting properties.
What the researchers have now discovered, however, is an additional aspect to the variable charge density, which they term “charge density fluctuations”. These have been identified as an additional charge modulation, collective and with a shorter correlation length. They are very pervasive, meaning that compared to the conventional charge density waves, they are present at a much greater range of temperatures, up to room temperature and beyond, and at different levels of oxygen doping.
Riccardo Arpaia."These charge density fluctuations could be a crucial ingredient of the highly unconventional room temperature properties of high critical temperature superconductors—something which challenges our common understanding of the charge transport in metals,” says Riccardo Arpaia (to the right), postdoctoral researcher at the Department of Microtechnology and Nanoscience—MC2—at Chalmers, who carried out the research.
“One could say the charge density waves, which were already very well known, were just the tip of the iceberg. The charge density fluctuations which we have now identified are like the hidden bulk of the iceberg.” says Riccardo Arpaia. “The discoveries were possible thanks to the major developments of synchrotron-based x-ray scattering techniques, and to the quality of the samples we have used.”
The samples were fabricated at the Italian National Research Council in Napoli, and in the research group at Chalmers led by Professor Floriana Lombardi.
A further finding of the paper looks at how the charge density fluctuations evolve with the temperature of the material. While the previously-known charge density waves change abruptly as soon as the critical temperature is reached—meaning, dependent on whether the material is in a superconductive state or not—the newly-discovered charge density fluctuations are unaffected by the superconductivity. This indicates that the two characteristics are not ‘in competition’ with one another. This finding might strengthen the researchers’ theory that the charge density fluctuations are the key to explaining the mystery of these materials.
Because superconductors operate at such low temperatures, they require cooling from liquid helium or liquid nitrogen, making them expensive and difficult to use outside of certain commercial applications. But if a superconductor could be made to work closer to room temperature, it could have enormous potential. Therefore, there is a lot of interest in improving our understanding of how this class of superconductors works.
Giacomo Ghiringhelli, Professor of Physics at Politecnico di Milano says about the research: “Since 2012, when charge density waves in cuprates were first observed, their importance had not been disputed – but their role had remained unclear. The newly observed charge density fluctuations appear to be a very general property of these materials, meaning they are likely playing a crucial role in the transport of electric current in cuprates.”
Suggested Items
NUS Physicists Discover a Copper-free High-temperature Superconducting Oxide
03/28/2025 | PRNewswireProfessor Ariando and Dr Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesised a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233 degrees Celsius (deg C), under ambient pressure.
Indium to Showcase Proven EV Products and High-Reliability Alloys at Productronica China
03/26/2025 | Indium CorporationAs a global materials supplier and trusted partner in electric vehicle (EV) and e-Mobility manufacturing, Indium Corporation® is proud to showcase its high-reliability alloys and soldering solutions at Productronica China, March 26-28, in Shanghai, China.
YINCAE: UF 158UL Redefines Underfill for Large Chips
03/12/2025 | YINCAEYINCAE, a leading innovator in advanced materials solutions, today announced the launch of its groundbreaking underfill material, UF 158UL. This cutting-edge product is designed to meet the increasing demands of large format chips, offering unparalleled performance in room temperature flow, fast cure, and high reliability.
Indium to Showcase High-Reliability Solder Technology at IPC APEX EXPO 2025
03/05/2025 | Indium CorporationIndium Corporation®, a leading materials provider for the electronics assembly market, will feature its high-reliability solder solutions at IPC APEX EXPO 2025, taking place March 18-20 in Anaheim, California.
epoxySet Launches UV-8675 – Deep Section, UV Cured Adhesive for PVC
02/19/2025 | epoxySetepoxySet introduces the UV-8675, acrylated urethane adhesive for bonding PVC, polycarbonate and most other plastics. Designed for bonding PVC tubing in medical devices, it also bonds well to glass and metals. This semirigid polymer offers high bond strength without causing stress cracks.