Development of a Stretchable Vibration-Powered Device Using a Liquid Electret
October 11, 2019 | NIMSEstimated reading time: 2 minutes
NIMS and AIST developed a liquid electret material capable of semi-permanently retaining static electricity. They subsequently combined this material with soft electrodes to create the first bendable, stretchable vibration-powered device in the world. Because this device is highly deformable and capable of converting very subtle vibrations into electrical signals, it may be applicable to the development of healthcare-devices, such as self-powered heartbeat and pulse sensors.
An electret material capable of semi-permanently retaining an electrical charge can generate voltage as its distance to the associated electrode changes. Because of this property, electret materials may be applicable to the development of vibration-powered (piezoelectric) devices and sensors capable of converting externally applied vibration and pressure into electrical signals. However, conventional electret materials are solid or in film form, and as such are inflexible and incapable of deformation into complex shapes, making them unsuitable for use in the development of wearable heartbeat and pulse sensors. A great deal of interest therefore exists in the development of bendable and stretchable vibration-powered devices that can be processed into a variety of shapes and used as such sensors.
This research group shielded porphyrin—an organic compound—with a flexible yet insulating structure (i.e., branched alkyl chains), thereby developing a liquid material at room temperature which is able to stably retain static charge on the porphyrin unit. The group subsequently developed a bendable and stretchable vibration-powered device. First, a high voltage was applied to this liquid material, thereby electrically charging it. The liquid material was then allowed to soak into a stretchable textile and the soaked textile was then sandwiched between soft, polyurethane electrodes integrated with silver-plated fibers as a wiring material. When the surface of the device is pressed with a fingertip, it generates a voltage in a range of ±100–200 mV and operates stably for at least 1.5 months.
In future research, the group hopes to achieve healthcare use of this device by enhancing the ability of the liquid electret material to retain static electricity and making modifications to the processing techniques applied to the device. The group will also pursue potential use of this vibration-powered device as a power source for IoT devices by combining it with a voltage-current conversion system and capacitor, etc.
This project was carried out by a research group led by Takashi Nakanishi (Group Leader, International Center for Materials Nanoarchitectonics, NIMS) and Manabu Yoshida (Team Leader, Sensing System Research Center, AIST). The project was funded by the JSPS Grant-in-Aid for Scientific Research (grant number: 18H03922) and the TIA collaborative research program "KAKEHASHI."
The newly developed liquid electret material (left) and the bendable and stretchable vibration-powered device (middle and right)
Suggested Items
Despite Regional 200x Funding Differences, Post-Quantum Readiness Won’t Hinder eIDAS Unity
11/05/2024 | ABI ResearchPost-Quantum Cryptography (PQC) inevitably has an outsized impact on a technology remit covering many trust service use cases, with cryptographically robust signing acting as the market's core. Without this, there is no trust and, therefore, no Electronic Identification and Trust Services (eIDAS).
SIA Commends Selections for CHIPS R&D Flagship Facilities
11/04/2024 | SIAThe Semiconductor Industry Association (SIA) released the following statement from SIA President and CEO John Neuffer commending the selections for the first two CHIPS for America National Semiconductor Technology Center (NSTC) facilities.
Biden-Harris Administration to Invest $825 Million in First CHIPS for America R&D Facility
11/01/2024 | U.S. Department of CommerceThe Department of Commerce and Natcast, the operator of the National Semiconductor Technology Center (NSTC), announced the expected location for the first CHIPS for America research and development (R&D) flagship facility. The CHIPS for America Extreme Ultraviolet (EUV) Accelerator, an NSTC facility (EUV Accelerator), is expected to operate within NY CREATES’ Albany NanoTech Complex in Albany, New York, supported by a proposed federal investment of an estimated $825 million. The EUV Accelerator will focus on advancing state of the art EUV technology and the R&D that relies on it.
Biden-Harris Administration Designates Albany NanoTech as First CHIPS for America R&D Flagship
10/31/2024 | U.S. Department of CommerceThe Department of Commerce and Natcast, the operator of the National Semiconductor Technology Center (NSTC), announced the expected location for the first CHIPS for America research and development (R&D) flagship facility.
NY Lands First National Semiconductor Facility
10/31/2024 | Governor Kathy HochulGovernor Kathy Hochul celebrated the designation of NY CREATES’ Albany NanoTech Complex as the location of the CHIPS for America EUV Accelerator, an NSTC facility.