DeepFly3D: The Deep-Learning Way to Design Fly-Like Robots
October 11, 2019 | EPFLEstimated reading time: 2 minutes

EPFL scientists have developed a deep-learning based motion-capture software that uses multiple camera views to model the movements of a fly in three dimensions. The ultimate aim is to use this knowledge to design fly-like robots.
“Just think about what a fly can do,” says Professor Pavan Ramdya, whose lab at EPFL’s Brain Mind Institute, with the lab of Professor Pascal Fua at EPFL’s Institute for Computer Science, led the study. “A fly can climb across terrain that a wheeled robot would not be able to.”
Flies aren’t exactly endearing to humans. We rightly associate them with less-than-appetizing experiences in our daily lives. But there is an unexpected path to redemption: Robots. It turns out that flies have some features and abilities that can inform a new design for robotic systems.
“Unlike most vertebrates, flies can climb nearly any terrain,” says Ramdya. “They can stick to walls and ceilings because they have adhesive pads and claws on the tips of their legs. This allows them to basically go anywhere. That's interesting also because if you can rest on any surface, you can manage your energy expenditure by waiting for the right moment to act.”
It was this vision of extracting the principles that govern fly behavior to inform the design of robots that drove the development of DeepFly3D, a motion-capture system for the fly Drosophila melanogaster, a model organism that is nearly ubiquitously used across biology.
In Ramdya’s experimental setup, a fly walks on top of a tiny floating ball—like a miniature treadmill—while seven cameras record its every movement. The fly’s top side is glued onto an unmovable stage so that it always stays in place while walking on the ball. Nevertheless, the fly “believes” that it is moving freely.
The collected camera images are then processed by DeepFly3D, a deep-learning software developed by Semih Günel, a PhD student working with both Ramdya’s and Fua’s labs. “This is a fine example of where an interdisciplinary collaboration was necessary and transformative,” says Ramdya. “By leveraging computer science and neuroscience, we’ve tackled a long-standing challenge.”
Different poses of the fruit fly Drosophila melanogaster are captured by multiple cameras and processed with the DeepFly3D software. Credit: P. Ramdya, EPFL.
What’s special about DeepFly3D is that is can infer the 3D pose of the fly—or even other animals—meaning that it can automatically predict and make behavioral measurements at unprecedented resolution for a variety of biological applications. The software doesn’t need to be calibrated manually and it uses camera images to automatically detect and correct any errors it makes in its calculations of the fly’s pose. Finally, it also uses active learning to improve its own performance.
DeepFly3D opens up a way to efficiently and accurately model the movements, poses, and joint angles of a fruit fly in three dimensions. This may inspire a standard way to automatically model 3D pose in other organisms as well.
“The fly, as a model organism, balances tractability and complexity very well,” says Ramdya. “If we learn how it does what it does, we can have important impact on robotics and medicine and, perhaps most importantly, we can gain these insights in a relatively short period of time.”
Suggested Items
Flex Wins Two 2025 PACE Awards for Innovation in Automotive Compute and Power Electronics
04/22/2025 | PRNewswireFlex was named a two-time 2025 Automotive News PACE Award winner at the awards ceremony on April 15, recognized for its industry-leading Jupiter Compute Platform and Backup DC/DC Converter design platforms.
Material Selection and RF Design
04/21/2025 | Andy Shaughnessy, Design007 MagazineInnovation rarely sleeps in this industry, and the RF laminate segment offers a perfect example. RF materials have continued to evolve, providing PCB designers much more than an either/or choice. I asked materials expert Alun Morgan, technology ambassador for the Ventec International Group, to walk us through the available RF material sets and how smart material selection can ease the burden on RF designers and design engineers.
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Electronic System Design Industry Posts $4.9 Billion in Revenue in Q4 2024
04/15/2025 | SEMIElectronic System Design (ESD) industry revenue increased 11% to $4,927.3 million in the fourth quarter of 2024 from the $4440.9 million reported in the fourth quarter of 2023, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.