New Device Uses Sound Waves to Improve Diagnosis of Cancer
October 23, 2019 | University of TexasEstimated reading time: 2 minutes

Researchers at the College of Engineering at Texas A&M have created an acoustofluidic cytometer that uses sound waves to measure the stiffness and compressibility of cancer cells. This not only will aid in the classification of cancer types, but will also make diagnosis more efficient and observable.
The team is led by Arum Han, professor and Presidential Impact Fellow in the Department of Electrical and Computer Engineering at Texas A&M University, and Han Wang, professor at Tsinghua University. Their recent publication in the journal Lab on a Chip was featured in an article on PhysicsWorld.
So why is it important to understand the biophysical properties of cancer cells?
Characteristics that set these cells apart from their healthy counterparts offer insight into the disease that is invaluable to the future of cancer research.
“For example, if you’re trying to figure out if a biopsy contains cancer cells or not, you might be able to look at the mechanical properties of the cells to determine if cancer is present in the sample,” said Han.
He went on to explain another scenario: how the biophysical properties of cancerous cells change as they advance through stages and metastasize.
“One hypothesis is that as cancer cells progress, they become softer, which makes it easier for them to circulate and spread inside a human body,” said Han. “So if a late stage cancer has an identifiably different biophysical property than earlier stages, it could be possible to tell what stage a cancer is in by simply measuring the mechanical property of cell types. This could be used to quantify the stages of cancer.”
While many microfluid devices use pushing mechanisms and microstructures to measure the compressibility and stiffness of cancer cells, Han’s acoustofluidic cytometer utilizes sound waves.
Acoustic waves traveling in a rectangular microfluidic channel form a “standing wave,” which creates zones called acoustic pressure nodes. Cells flowing inside the channel will move toward and gather near these pressure nodes. The speed at which the cells move varies depending on how soft or firm they are, revealing their compressibility and stiffness without the need for any complex mechanisms.
By observing how cancer cells react under the influence of acoustic sound waves, researchers can gain insight about the cells’ mechanical properties, which can then be correlated to different stages of cancer.
“The simplicity of our device and its operation is what makes this particular work very exciting compared to previous methods of measurement, which require very expensive equipment or very complicated microstructures to work,” said Han.
Suggested Items
Ventec International Group Enters into a Fulfillment and Supply Agreement with Matrix and Launches Ventec Americas
06/09/2025 | Ventec International GroupVentec is excited to announce a new partnership with Matrix aimed at enhancing the fulfillment, value-added conversion, and distribution of PCB base materials across the North American market. This collaboration is set to significantly improve supply chain efficiency, and delivery performance for the company's North American customers.
WellPCB, OurPCB Launch Low-Cost PCB Assembly and Custom Cable Assembly Solutions
05/29/2025 | ACCESSWIREWellPCB and OurPCB, world leading PCB manufacturing service providers, announced today that they have officially launched new Low-Cost PCB Assembly Solutions and Custom Cable Assembly services to meet the needs of the electronics manufacturing industry for high cost performance and flexible customization.
IPC Applauds Leadership of Reps. Moore and Krishnamoorthi on PCB Manufacturing Bill
05/28/2025 | IPCIPC, the global electronics association serving more than 1,400 U.S. companies and over 3,200 worldwide, strongly supports the bipartisan reintroduction on May 28 of the Protecting Circuit Boards and Substrates (PCBS) Act in the 119th Congress.
FastlinkPCB Accelerates Global Expansion, Builds Efficient PCB Industry Chain
05/26/2025 | FastlinkPCBFastlinkPCB, a PCB manufacturing and assembly solutions provider, announced that it has completed the layout of subsidiaries in the US, Germany, Switzerland, and Malaysia over the past year, forming a localized service network covering North America, Europe, and Southeast Asia.
LITEON Technology Reports Consolidated April Sales of NT$13.4 Billion Up 27% YoY
05/09/2025 | LITEON TechnologyLITEON Technology reported its April consolidated revenue of NT$13.4 billion. Thanks to the growth from power management in cloud computing, advanced server, and networking, the revenue is up 27% YoY.