New Device Uses Sound Waves to Improve Diagnosis of Cancer
October 23, 2019 | University of TexasEstimated reading time: 2 minutes
Researchers at the College of Engineering at Texas A&M have created an acoustofluidic cytometer that uses sound waves to measure the stiffness and compressibility of cancer cells. This not only will aid in the classification of cancer types, but will also make diagnosis more efficient and observable.
The team is led by Arum Han, professor and Presidential Impact Fellow in the Department of Electrical and Computer Engineering at Texas A&M University, and Han Wang, professor at Tsinghua University. Their recent publication in the journal Lab on a Chip was featured in an article on PhysicsWorld.
So why is it important to understand the biophysical properties of cancer cells?
Characteristics that set these cells apart from their healthy counterparts offer insight into the disease that is invaluable to the future of cancer research.
“For example, if you’re trying to figure out if a biopsy contains cancer cells or not, you might be able to look at the mechanical properties of the cells to determine if cancer is present in the sample,” said Han.
He went on to explain another scenario: how the biophysical properties of cancerous cells change as they advance through stages and metastasize.
“One hypothesis is that as cancer cells progress, they become softer, which makes it easier for them to circulate and spread inside a human body,” said Han. “So if a late stage cancer has an identifiably different biophysical property than earlier stages, it could be possible to tell what stage a cancer is in by simply measuring the mechanical property of cell types. This could be used to quantify the stages of cancer.”
While many microfluid devices use pushing mechanisms and microstructures to measure the compressibility and stiffness of cancer cells, Han’s acoustofluidic cytometer utilizes sound waves.
Acoustic waves traveling in a rectangular microfluidic channel form a “standing wave,” which creates zones called acoustic pressure nodes. Cells flowing inside the channel will move toward and gather near these pressure nodes. The speed at which the cells move varies depending on how soft or firm they are, revealing their compressibility and stiffness without the need for any complex mechanisms.
By observing how cancer cells react under the influence of acoustic sound waves, researchers can gain insight about the cells’ mechanical properties, which can then be correlated to different stages of cancer.
“The simplicity of our device and its operation is what makes this particular work very exciting compared to previous methods of measurement, which require very expensive equipment or very complicated microstructures to work,” said Han.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Standard of Excellence: Speed vs. Quality in Customer Service
10/29/2025 | Anaya Vardya -- Column: Standard of ExcellenceThe key to a company’s success is excellent customer service. In our industry, with tight deadlines, high expectations, and particularly where customers demand immediate responses, there’s a challenging balancing act between speed and quality. PCB companies—like all businesses serving demanding B2B clients in aerospace, defense, medical, and high-reliability markets—often feel caught between responding quickly and providing accurate, helpful, and meaningful information.
Come Together: Tom Marktscheffel Used Data to Build CFX and a Global Factory Standard
10/27/2025 | Sandy Gentry, Community MagazineWhen Tom Marktscheffel, director of product management software solutions at ASMPT, looks back on his nearly three decades in electronics manufacturing, one word stands out: data. “Data is the new gold,” he says. Without it, automation, artificial intelligence, and the factory of the future are impossible. With it, the industry can move from manual, error-prone processes to smart, connected systems that make real-time decisions.
It’s Only Common Sense: Your Biggest Competitor Is Complacency
10/27/2025 | Dan Beaulieu -- Column: It's Only Common SenseIf I had a nickel for every time I heard, “That’s how we’ve always done it,” I’d own a PCB factory on every continent. That statement deserves to be carved on a tombstone, because it’s a eulogy for innovation, growth, and survival. Customers, markets, and technology don’t care how you’ve always done it. Change is happening every day, and if you’re standing still, you’re not holding your ground; you’re falling behind.
PDN Optimization: Balancing Performance and Cost in SoC Designs
10/22/2025 | Zach Caprai. Siemens EDAThis article demonstrates advanced PDN optimization techniques through a real-world case study of AMD’s Versal adaptive SoC platform. Using the VCK190 evaluation kit featuring the Versal AI Core series VC1902 device, I’ll explore how effective PDN design and optimization can help meet demanding technical specifications while addressing essential business goals.
It’s Only Common Sense: Stop Whining About the Market—Outwork It
10/06/2025 | Dan Beaulieu -- Column: It's Only Common SenseWhenever the market hiccups or the industry cycle dips, I hear the same tired chorus: “The market is down. Customers aren’t buying. What can we do? We just have to wait it out.” Nonsense. If you think that by showing up, opening your doors, and waiting for the economy to smile kindly upon you, that success will follow, you are in the wrong business. Worse yet, you’re living in the wrong mindset. Most people don’t want to hear the truth that winners find business in down cycles. Losers blame the economy.