Big Improvements in Thin-Film Solar Cell Efficiency Now Possible
October 23, 2019 | Penn State Materials Research InstituteEstimated reading time: 1 minute

Researchers at Penn State and Delaware have developed a theoretical method to improve the efficiency of thin-film solar cells by up to 33%. Flexible thin-film solar cells are needed to supply electrical power to fabrics, clothing, backpacks and anywhere that a local autonomous power supply is required.
Rooftop solar based on silicon has made solar energy cheap and readily available. But silicon is rigid and heavy, suitable for large-scale power production but not for portable power. Currently, flexible solar commands around 5% of the solar cell market. In order to increase the use of flexible solar, it is important to increase the conversion efficiency from its current level of around 21%. By tweaking a couple of layers in the solar cell, the researchers believe they can increase efficiency to 27.8%.
By varying the semiconductor bandgap on a gradient, they were able to improve the capture of solar energy and increase efficiency by a third. A second tweak involves including a rough reflective layer which helps to slow the recombination of electrons and their holes, again improving efficiency.
In other work, the team has shown that they can increase the efficiency of another type of thin-film cell from 12% to 21%, an improvement of 80%.
“This tells us the opportunity for significant improvement exists,” he says.
Other opportunities have also arisen, including optimizing solar cells for interior lighting and for developing colored solar cells that can be incorporated into designs and clothing.
The researchers report their finding in a recent edition of the journal Applied Optics in a paper titled "Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading." Additional authors include lead author Faiz Ahmad, a Ph.D. candidate in the Lakhtakia group, and Tom Anderson and Peter Monk, University of Delaware.
Funding was provided by the National Science Foundation and the Charles Godfrey Binder Endowment.
Suggested Items
Flexible Electronics Market to Reach $66.9 Billion by 2032, Growing at a CAGR of 9.2% from 2025
06/30/2025 | PRNewswireThe flexible electronics market is projected to reach $66.9 billion by 2032, up from an estimated $38.4 billion in 2025, growing at a robust CAGR of 9.2% during the forecast period.
All Flex Solutions Upgrades Lamination Layup
06/22/2025 | All Flex SolutionsAll Flex Solutions has invested in Ulrich Rotte lamination layup stations in their rigid flex layup area. The Ulrich Rotte stations automate the layup process by handling the lamination plates, which are heavy, and sequencing the layup process for the operators.
SEMI FlexTech Solicits Proposals for Advancing the Future of Flexible Hybrid Electronics
06/18/2025 | SEMIFlexTech, a SEMI Technology Community, today issued a Request for Proposals (RFP) to advance flexible hybrid electronics (FHE) technologies, including the development of advanced materials and additive processing.
Roll-to-Roll Technologies for Flexible Devices Set to Grow at 11.5% CAGR
06/11/2025 | GlobeNewswireAccording to the latest study from BCC Research, the “Global Markets for Roll-to-Roll Technologies for Flexible Devices” is expected to reach $69.8 billion by the end of 2029 at a compound annual growth rate (CAGR) of 11.5% from 2024 to 2029.
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.