Flexible, Transparent and Cost-Effective Lasers
October 25, 2019 | IMDEA NanocienciaEstimated reading time: 1 minute
A collaboration between IMDEA Nanociencia and Nanjing Tech University researchers produces flexible, transparent and cost-effective lasers.
The interest on plastic electronics and photonics has experienced a significant increase in the last decades due to the exceptional optical, semiconducting and mechanical properties of these materials. Plastic electronics, based on conjugated polymers, combine the benefits of cost-effective processability, compatible with large-area deposition for designing laser geometries of virtually any shape, not possible with rigid inorganic semiconductor materials. These highly luminiscent materials have been incorporated into a variety of resonator geometries, such as photonic crystals or distributed feedback (DBF) cavities, to enable optically pumped conjugated polymer lasers with emission across the visible and near-infrared spectrum.
A collaboration between IMDEA Nanociencia and Nanjing Tech University researchers have produced novel transparent, all-polymer DBF lasers. The DBF lasers make use of the periodic wavelength-scale nanostructures to backscatter photons for constructive interference. In their work, DBF structures were nanoimprinted on thermoplastic (cellulose diacetate) films and covered by highly luminescent conjugated polymers. In this way, the designed lasers present a homogeneous emission in the blue, green and red colors. Besides, the emission wavelength is tunable by bending the DBF flexible cavities.
The advantages of using thermoplastic materials such as cellulose diacetate as substrates are many: it is cheap, readily available, flexible and transparent even upon annealing. Also, cellulose diacetate is compatible with several organic solvents, it is obtained from renewable wood pulp and it is biodegradable. Researchers have demonstrated the robustness of their structures by assessing the lasing threshold values upon bending, confirming that the optical and structural properties of the active layer do not deteriorate.
The followed strategy is scalable and versatile. DBF lasers have currently a wide range of applications as mechanically flexible lasers, for instance, on lab-on-a-chip devices in biomedical analysis, information technology and sensing.
This work is a collaboration between the " Organic Photophysics and Photonics" group led by Juan Cabanillas, the "Nanostructured Functional Surfaces" group led by Isabel Rodríguez at IMDEA Nanociencia and Ruidong Xia from Nanjing Tech University, together with Daniel Granados and José C. Castro (IMDEA Nanociencia). The work has been partially funded by the Spanish Ministry of Economy, Industry, and Competitiveness, the Regional Government of Comunidad de Madrid and the Severo Ochoa Programme for Centres of Excellence in R&D, awarded to IMDEA Nanociencia.
Suggested Items
BWXT to Acquire L3Harris’ A.O.T. Business to Expand Special Materials Portfolio
11/05/2024 | L3Harris TechnologiesBWX Technologies, Inc. and L3Harris Technologies, Inc. announced the signing of a purchase agreement for BWXT to acquire L3Harris’ Aerojet Ordnance Tennessee, Inc. (A.O.T.) business for approximately $100 million.
Solid-State Batteries Enter Pilot Production, Costs Expected to Drop to CNY 0.6–0.7/Wh by 2035
11/01/2024 | TrendForceThe global pursuit and anticipation of applications for solid-state batteries (SSBs) have accelerated the commercialization process of this technology.
Robots in Logistics Boom Worldwide
10/31/2024 | BUSINESS WIREThe demand for robots for transport and logistics is increasing: Almost 113,000 robots were sold for transport and logistics tasks in 2023 – up 35%. These results are published by VDMA Materials Handling and Intralogistics Association in cooperation with the IFR.
Machine Learning Can Predict the Mechanical Properties of Polymers
10/30/2024 | ACN NewswirePolymers such as polypropylene are fundamental materials in the modern world, found in everything from computers to cars. Because of their ubiquity, it’s vital that materials scientists know exactly how each newly developed polymer will perform under different preparation conditions.
DELO Introduces UV-approach for Fan-out Wafer-level Packaging
10/25/2024 | DELODELO has developed a new approach for fan-out wafer-level packaging (FOWLP). Its feasibility study shows: With the use of UV-curable molding materials instead of heat curing ones, warpage and die shift can be reduced significantly. Additionally, this leads to improvements in curing time and minimizes the energy consumption.