Aerojet Rocketdyne Gears Up for First Flight of Boeing’s Starliner Spacecraft
December 19, 2019 | GlobeNewswireEstimated reading time: 3 minutes

From start to finish, Aerojet Rocketdyne will play a major role in Boeing’s first demonstration mission of the CST-100 Starliner spacecraft for NASA, ushering in a new era of human spaceflight. The Starliner Orbital Flight Test (OFT) demonstration is slated to launch Dec. 20, 2019 from Cape Canaveral Air Force Station in Florida.
Aerojet Rocketdyne propulsion hardware is featured on all phases of the upcoming OFT mission, from launch to atmospheric re-entry, extending a legacy that dates to the dawn of the space age. Aerojet Rocketdyne propulsion systems will enable the mission, which calls for an uncrewed Starliner spacecraft to dock with the International Space Station, conduct in-orbit system checkouts, and then return home for a parachute-aided landing.
“We’re incredibly proud that Boeing entrusted us to provide the propulsion for this critical national capability,” said Eileen Drake, Aerojet Rocketdyne CEO and president. “This historic mission will lay the foundation for launching our astronauts from American soil once again.”
A dual-engine Centaur powered by two RL10 engines manufactured in West Palm Beach, Florida, will be making its debut on the United Launch Alliance Atlas V rocket during the Starliner OFT mission. The dual-engine Centaur provides additional thrust to enable safe abort options along the entire ascent profile. Aerojet Rocketdyne AJ-60A solid rocket boosters will provide a total of more than 750,000 pounds of thrust as part of the boost propulsion for the Atlas V.
Aerojet Rocketdyne in-space propulsion will be used to orient and maneuver both the crew module and the service module. Aerojet Rocketdyne thrusters on the service module will also be used to reboost the International Space Station.
Additionally, the composite overwrap pressurant vessels on the launch vehicle, crew module and service module, built by Aerojet Rocketdyne subsidiary ARDÉ, located in Carlstadt, New Jersey, are manufactured based on a long history of proven flight safety and reliability. ARDÉ designs have flown more than 700 times on launch vehicles and spacecraft around the world.
Aerojet Rocketdyne propulsion on the mission includes:
- Atlas V Rocket: Two AJ-60A solid rocket boosters that provide more than 375,000 pounds of thrust each, manufactured in Sacramento, California. Helium tanks for the first and upper stages built by Aerojet Rocketdyne subsidiary ARDÉ, located in Carlstadt, New Jersey. Reaction control engines built in Redmond, Washington, and two RL10 engines built in West Palm Beach, Florida, for the dual-engine Centaur upper stage.
- Crew Module: 12 reusable thrusters manufactured in Redmond, Washington, which generate a total of 1,200 pounds of thrust to properly orient the spacecraft for re-entry into the atmosphere. Eight pressure control subsystem tanks to store nitrogen, oxygen and nitrox built by ARDÉ.
- Service Module: 28 reaction control system engines, which provide 85 pounds of thrust each to enable on-orbit maneuvering and International Space Station reboost. Twenty orbital maneuvering and attitude control engines, providing 1,500 pounds of thrust each, are used for abort, maneuvering and stage separation. Four launch abort engines, with 40,000 pounds of thrust each, are used only in the event of a launch emergency to propel the crew capsule away from the launch vehicle. All of these types of engines are built in Canoga Park, California. Additionally, ARDÉ provides 4 fuel, 4 oxidizer and 2 pressurant service module tanks.
“Safe, reliable astronaut access to low-Earth orbit is critical for the future of a robust deep space exploration program,” added Drake. “The upcoming Orbital Flight Test builds on the successful test of Starliner’s launch abort system in November and paves the way for the first Starliner flight test with astronauts on board.”
Starliner was developed under a NASA-industry partnership to leverage commercial capabilities and practices to launch astronauts from U.S. soil for the first time since the retirement of the space shuttle in 2011.
Suggested Items
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Green Circuits to Discuss High-Reliability Space Electronics in Booth 233 at the 2025 Small Satellite Conference
07/10/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 39th Annual Small Satellite Conference, taking place August 10–13, 2025, in Salt Lake City, Utah.
ASMPT Introduces AERO PRO High-Performance Wire Bonder
07/09/2025 | ASMPTASMPT, the world’s leading provider of hardware and software solutions for semiconductor and electronics manufacturing, introduces its latest high-performance wire bonder: the AERO PRO.
FTG Announces Q2 2025 Financial Results
07/09/2025 | Globe NewswireFiran Technology Group Corporation announced financial results for the second quarter 2025. Revenue: Recorded at $48.7 million, a 25.6% increase over Q2 2024.