Invisible Headlights: Harnessing Ambient Thermal Emissions to Enable Passive 3D Vision at Night
March 6, 2020 | DARPAEstimated reading time: 1 minute
Autonomous and semi-autonomous systems need active illumination to navigate at night or underground. Switching on visible headlights or some other emitting system like lidar, however, has a significant drawback: It allows adversaries to detect a vehicle’s presence, in some cases from long distances away.
To eliminate this vulnerability, DARPA announced the Invisible Headlights program. The fundamental research effort seeks to discover and quantify information contained in ambient thermal emissions in a wide variety of environments and to create new passive 3D sensors and algorithms to exploit that information.
“We’re aiming to make completely passive navigation in pitch dark conditions possible,” said Joe Altepeter, program manager in DARPA’s Defense Sciences Office. “In the depths of a cave or in the dark of a moonless, starless night with dense fog, current autonomous systems can’t make sense of the environment without radiating some signal—whether it’s a laser pulse, radar or visible light beam—all of which we want to avoid. If it involves emitting a signal, it’s not invisible for the sake of this program.”
Since everything—animate and inanimate—gives off some thermal energy, the goal is to discover what information can be captured from even an extremely small amount of thermal radiation and then develop novel algorithms and passive sensors to transform that information into a 3D scene for navigation.
The program includes three phases: 1) Discovery – to determine if thermal emissions contain sufficient information to enable autonomous driving at night or underground; 2) Optimization – to refine models, experimental designs, and ensure system feasibility for achieving 3D vision at both low speeds (25 mph); and 3) Advanced Prototypes – to build and test passive demonstration systems that compete with active sensors.
“If we’re successful, the capability of Invisible Headlights could extend the environments and types of missions in which autonomous assets can operate – at night, underground, in the arctic, and in fog,” Altepeter said. “The fundamental understanding of what information is available in ambient thermal emissions could lead to advances in other areas, such as chemical sensing, multispectral vision systems, and other applications that exploit infrared light.”
A Proposers Day is scheduled for March 16, 2020, in Arlington, Virginia. A webcast will also be available for those participating online. For in-person and webcast registration details visit: go.usa.gov/xddrT. A Broad Agency Announcement solicitation is anticipated in the coming weeks to post on beta.sam.gov.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Technica USA Partners with Creative Electron
10/22/2025 | Technica USATechnica USA is proud to announce the partnership with Creative Electron Inc. located in San Marcos, CA.
MES Software Tools Need Thoughtful Integration
10/21/2025 | Nolan Johnson, SMT007 MagazineThe Global Electronics Association recently published a survey report on the state of EMS production software. This project, led by Thiago Guimaraes, director of industry intelligence, connects the dots across the global electronics value chain to uncover practical insights that individual companies might not have seen on their own. In this interview, Thiago discusses the whys and hows of this report.
Light-curable Solutions for Reliable Electronics in Space Applications
10/15/2025 | Virginia Hogan, DymaxDesigning electronics for space environments, particularly those in low Earth orbit (LEO), requires careful consideration of materials that can withstand extreme conditions while supporting long-term reliability. Engineers designing satellite systems, aerospace instrumentation, and high-altitude platforms face a familiar set of challenges: contamination control, mechanical stress, thermal cycling, and manufacturability.
Elementary, Mr. Watson: High Power: When Physics Becomes Real
10/15/2025 | John Watson -- Column: Elementary, Mr. WatsonHave you ever noticed how high-speed design and signal integrity classes are always packed to standing room only, but just down the hall, the session on power electronics has plenty of empty chairs? It's not just a coincidence; it's a trend I've observed over the years as both an attendee and instructor.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).