Sweat Sensor Detects Stress Levels; May Find Use in Space Exploration
March 9, 2020 | IDTechExEstimated reading time: 3 minutes

If someone asked you right now how stressed you are, what would you say? A little? A lot? You do not know?
Those are all valid responses, but they are not especially useful to researchers and medical professionals because they are subjective and not easily quantified. Nonetheless, in lieu of a better method of measuring stress, the common method for years has consisted of a stress questionnaire. The main alternative to the questionnaire, a blood test, can provide quantitative data but requires a trained professional to draw the blood, and the stress of the procedure itself—being poked with a large needle—can skew the results of a lot of people.
But something better might be right around the corner.
Wei Gao, assistant professor of medical engineering at Caltech, has produced a wireless sweat sensor that can accurately detect levels of cortisol, a natural compound that is commonly thought of as the body's stress hormone. In a new paper appearing in the journal Matter, Gao and his fellow researchers show how they designed and made the mass-producible device and how it works, and demonstrate that it is effective at detecting cortisol levels in near real time.
The development of an inexpensive and accurate device for measuring cortisol could allow for more widespread and easier monitoring of stress but also of other conditions including anxiety, post-traumatic stress disorder, and depression—all of which are correlated with changes in cortisol levels.
The sensor Gao developed is prepared using a similar approach as another sweat sensor he recently created that can measure the level of uric acid in the bloodstream, which is useful for monitoring conditions like cardiovascular disease, diabetes, or kidney disease. That sweat sensor, and the new one Gao and his team have created, are both made of graphene, a sheet-like form of carbon. A plastic sheet is etched with a laser to generate a 3D graphene structure with tiny pores in which sweat can be analyzed. Those pores create a large amount of surface area in the sensor, which makes it sensitive enough to detect compounds that are only present in very small amounts in sweat. In the new sensor, those tiny pores are coupled with an antibody, a type of immune system molecule, specifically sensitive to cortisol, thus allowing it to detect the compound.
The sensor was tested in two different ways. In one test, a volunteer's sweat was analyzed over a period of six days, and data representing cortisol levels were collected. In a healthy individual, cortisol levels rise and fall on a daily cycle. The levels peak just after an individual wakes up each morning and decline throughout the day, and that is exactly what the sensor detected.
Gao says this is the first demonstration of a sensor that can noninvasively monitor the daily fluctuation of cortisol, adding that monitoring the daily cortisol cycle of a patient could reveal the presence of mental health conditions.
"Depression patients have a different circadian pattern of cortisol than healthy individuals do," he says. "With PTSD patients, it's another different one."
In the other test, changes in cortisol levels were recorded as they occurred in response to an acute stressor. This was done through two experiments. In the first, test subjects were asked to perform aerobic exercises, because intense exercise is known to cause a strong increase in cortisol. In the second experiment, test subjects were asked to submerge their hands in ice water, a stressor sufficient to elicit cortisol release. In both experiments, the sensors detected rising cortisol levels right away.
"Our analysis time could be only a few minutes," Gao says. "Typically, a blood test takes at least one to two hours and requires stress-inducing blood draw. For stress monitoring, time is very important."
Though Gao's sensor may find many uses in typical medical applications here on Earth, it is also being vetted for potential off-world applications. In October, NASA announced that Gao is one of six researchers selected to participate in studies of the health of humans on deep-space missions. Gao will receive funding to develop the sensor technology into a system for monitoring the stress and anxiety of astronauts as part of the program, which is being administered by the Translational Research Institute for Space Health (TRISH).
"We aim to develop a wearable system that can collect multimodal data, including both vital sign and molecular biomarker information, to obtain the accurate classification for deep space stress and anxiety," Gao says.
News courtesy of IDTechEx and Caltech.
Suggested Items
Defense Speak Interpreted: Is DARPA Still Around After CHIPS?
06/24/2025 | Dennis Fritz -- Column: Defense Speak InterpretedWhen I first published my Defense Speaks Interpreted column in January 2019 on the Defense Advanced Research Projects Agency (DARPA ERI), the agency advocated for an expanded Defense emphasis on closing the growing technology gap in microelectronics. The emphasis was on “resurgence.”
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/13/2025 | Marcy LaRont, I-Connect007Today is Friday the 13th, and in much of Western folklore, this is a day when bad luck is lurking. But while Friday the 13th may top Western superstition charts, the global calendar is sprinkled with its own unlucky legends. In Spain and Greece, the bad juju lands on Tuesday the 13th—a day linked to Mars, the god of war, and naturally, chaos. In Italy, it’s Friday the 17th that is feared, thanks to the Roman numeral XVII, which can be rearranged to spell VIXI—Latin for “I have lived” (a poetic way of saying you’re dead).
TTCI Celebrates Melanie Rutkauskas’ 10-Year Anniversary and Her Leadership of New Training Division
06/12/2025 | TTCIThe Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to celebrate Melanie Rutkauskas on her 10-year anniversary with the company.
Bridging the Knowledge Gap in Test: A Conversation with Bert Horner
06/11/2025 | Barry Matties, I-Connect007Bert Horner is a seasoned industry veteran and co-creator of The Test Connection, Inc. (TTCI), a test and inspection company spanning over 45 years. In this candid conversation, Bert reflects on the challenges our industry faces with the retirement of career professionals and the subsequent loss of critical tribal knowledge. As he unveils The Training Connection’s innovative training initiatives, Bert emphasizes the importance of evolving educational programs that align with industry needs, particularly in design for test (DFT), and sheds light on strategies being implemented to foster the next generation of engineers.
IPC Hall of Fame Spotlight Series: Highlighting Bob Neves
06/11/2025 | Dan Feinberg, I-Connect007Many IPC members who have contributed significantly to IPC and our industry have been awarded the IPC Raymond E. Pritchard Hall of Fame (HOF) Award. This Hall of Fame spotlight features industry veteran Bob Neves, who joined IPC in 1986 and was inducted into the IPC Hall of Fame in 2007.