Synopsys Broadens Collaboration with EPFL
July 6, 2020 | PR NewswireEstimated reading time: 1 minute

Synopsys, Inc. announced it has broadened its ongoing academic collaboration by entering into an agreement to license novel digital synthesis technologies from EPFL, the Swiss Federal Institute of Technology in Lausanne, Switzerland.
Over the past two years, Synopsys has been working in partnership with the University of Rochester and Yokohama National University developing a complete digital circuit design flow for Superconducting Electronics (SCE). This work is being conducted under IARPA's SuperTools project, a multi-year research effort that aims to create a SCE circuit design flow by developing a comprehensive set of Electronic Design Automation (EDA), and Technology Computer Aided Design (TCAD) tools to enable the analysis and design of SCE circuits with Very-Large-Scale Integration (VLSI).
EPFL's Integrated Systems Laboratory (LSI) has developed a method that may reduce the power requirement of electronic chips by mapping out their logic flows in a novel way. By deploying a different set of logic functions for the gates on the potentially billions of transistors found in modern electronic circuits, this system may shorten the circuits' calculation steps. This shortening may enable chip designers to make their chips faster or more energy efficient. EPFL's LSI is applying these methods in ongoing research on SCE conducted under NSF's SuperCool project.
Traditionally, four basic logic functions (and-or-not-mux) have been used to realize electronic circuits. But, EPFL's LSI group set out to produce optimized digital circuits by radically changing the software that generates logic diagrams involving majority functions. Initial studies indicated that the new approach could reduce the number of logic steps needed to execute a given task. Later experiments confirmed that these optimizations were able to reduce the number of logic levels by 18% on average. Engineers can exploit the reduction in logic levels to create faster or less power-hungry chips.
The SCE tools will allow engineers to design complex, high-speed digital circuits with much lower power requirements than available in today's semiconductor technologies. Advanced EDA and TCAD tools have been at the center of the semiconductor revolution and made possible the design and manufacture of today's highly sophisticated electronic systems. The SuperTools project endeavors to apply the experiences and learnings from semiconductors to superconducting electronics, offering the possibility of faster circuits with substantially lower power requirements.
Suggested Items
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Connect the Dots: The Future of PCB Design and Manufacturing
07/02/2025 | Matt Stevenson -- Column: Connect the DotsFor some time, I have been discussing the increasing complexity of PCBs and how designers can address the constantly evolving design requirements associated with them. My book, "The Printed Circuit Designer’s Guide to… Designing for Reality," details best practices for creating manufacturable boards in a modern production environment.
Siemens Turbocharges Semiconductor and PCB Design Portfolio with Generative and Agentic AI
06/24/2025 | SiemensAt the 2025 Design Automation Conference, Siemens Digital Industries Software today unveiled its AI-enhanced toolset for the EDA design flow.
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?