The New Tattoo: Drawing Electronics on Skin
July 16, 2020 | University of Missouri College of EngeeringEstimated reading time: 2 minutes
by Eric Stann | MU News Bureau
One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin. In a new study, University of Missouri engineers demonstrated that the simple combination of pencils and paper could be used to create devices that might be used to monitor personal health.
Their findings are published in the journal Proceedings of the National Academy of Sciences.
Zheng Yan, an assistant professor in the College of Engineering, said many existing commercial on-skin biomedical devices often contain two major components — a biomedical tracking component and a surrounding flexible material, such as plastic, to provide a supportive structure for the component to maintain an on-skin connection with a person’s body.
“The conventional approach for developing an on-skin biomedical electronic device is usually complex and often expensive to produce,” he said. “In contrast, our approach is low-cost and very simple. We can make a similar device using widely available pencils and paper.”
Since its invention, pencils — made of lead including various levels of graphite, clay and wax — have often been used for writing and drawing. In the study, the researchers discovered that pencils containing more than 90% graphite are able to conduct a high amount of energy created from the friction between paper and pencil caused by drawing or writing. Specifically, the researchers found pencils with 93% graphite were the best for creating a variety of on-skin bioelectronic devices drawn on commercial office copy paper. Yan said a biocompatible spray-on adhesive could also be applied to the paper to help it stick better to a person’s skin.
Individualized Health Care Benefits
The researchers said their discovery could have broad future applications in home-based, personalized health care, education and remote scientific research such as during the COVID-19 pandemic. Yan said the group’s next step would be to further develop and test the use of the biomedical components, including electrophysiological, temperature and biochemical sensors.
“For example, if a person has a sleep issue, we could draw a biomedical device that could help monitor that person’s sleep levels,” he said. “Or in the classroom, a teacher could engage students by incorporating the creation of a wearable device using pencils and paper into a lesson plan. Furthermore, this low-cost, easily customizable approach could allow scientists to conduct research at home, such as during a pandemic.”
An additional benefit to their approach, Yan said, is that paper can decompose in about a week, compared to many commercial devices that contain components that are not easily broken down.
The study, “Pencil-paper on-skin electronics,” was published in Proceedings of the National Academy of Sciences. Other authors on the study are Yadong Xu, Ganggang Zhao, Qihui Fei, Zhe Zhang, Zanyu Chen, Yangyang Chen, Yun Ling, Shinghua Ding and Guoliang Huang at MU; Liang Zhu and Pai-Yen Chen at the University of Illinois-Chicago; Fufei An and Qing Cao at the University of Illinois Urbana-Champaign; and Peijun Guo at Yale University.
Funding was provided by a University of Missouri start-up fund, and grants from the National Science Foundation, the Air Force Office of Scientific Research and the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.