-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueWhat's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
Moving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
CyberOptics to Present ‘100% Wafer Bump Metrology and Inspection’ Technical Paper at the SEMICON Taiwan
September 4, 2020 | CyberOptics CorporationEstimated reading time: 2 minutes
CyberOptics® Corporation, a leading global developer and manufacturer of high-precision 3D sensing technology solutions, will present at the SEMICON Taiwan Global SiP Summit on September 24, 2020 at 4:20pm. Tim Skunes, VP of R&D at CyberOptics, will share the technical presentation "Fast, 100% 3D Wafer Bump Metrology and Inspection to Improve Yields and 3D System Integration."
Advanced Packaging (AP) and wafer level packaging (WLP) continue to be among the most dynamic and rapidly evolving areas of semiconductor development and manufacturing. Most of these new processes take advantage of the third dimension, going vertical to continue packing more computing power into less space while circumventing the difficulties posed by further reductions in two-dimensional size. Packaging stacks include various configurations of single or multiple chips, interposers, flip chips and substrates, but in almost all cases, they rely on some form of bump to make the vertical connections between these components. The bumps may be solder balls, copper pillars or microbumps.
As the processes and features they create have become smaller and more complex, manufacturers face an increasing need for high-precision inspection and measurement to detect defects and improve process control. This need is amplified by the fact that these processes use expensive known good die, making the cost of failure extremely high. Bump metrology is fundamentally three-dimensional and bump height is just as important as size and location. Controlling bump height, both absolute and relative to neighboring bumps (coplanarity), is critical to ensuring good, reliable connections between stacked components.
Multiple Reflection Suppression™ (MRS™) sensor technology addresses this challenge by comparing data from multiple perspectives and fringe frequencies to identify and reject these spurious signals. The MRS sensor’s unique optical architecture and the system’s proprietary image fusing and processing algorithms provide accurate 3D characterization that is several times faster than conventional PSP. The NanoResolution MRS sensor has been developed for advanced packaging process control in what has been called the “middle-end” of the manufacturing process, where traditionally front-end and back-end processes overlap.
The MRS sensor integrated into CyberOptics’ WX3000™ system provides sub-micrometer accuracy on features as small as 25µm. While retaining its ability to reject spurious multiple reflections, it adds the ability to capture and analyze specular reflections from shiny surfaces of solder balls, bumps and pillars, allowing accurate inspection and 3D metrology of these critical packaging features.
The MRS sensor is 2-3X faster than alternative technologies. With data processing speeds in excess of 75 million 3D points per second, it delivers production-worthy throughput greater than 25 wafers (300mm) per hour. Complete 100% 3D/2D inspection can be accomplished at high speed for bump metrology, vs. the current practice of sampling approach. Both 3D/2D data is attained at the same time vs. time-consuming alternate methods that require separate scans for 3D and 2D.
For more information, visit www.cyberoptics.com or booth #L0310 at Semicon Taiwan from September 25-26.
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.